Терморегулятор своими руками

↑ 1. Техническое задание

Поскольку заказчик не мог внятно сказать, что ему нужно, пришлось придумывать его самому. Диапазон регулировки.

Комфортную температуру воды я определил, когда влез под душ со спиртовым термометром. Диапазон, с некоторым запасом оказался +30…40 градусов.

Мощность нагревателя.

Мощность ТЭНа я выбрал 1 кВт из следующих соображений: обычная электроарматура (контакты, провода и т. п.) рассчитана на 6 А. Надо учитывать ограничение потребления мощности на даче. Затем, надо учесть, что воду надо не кипятить, не превращать её в пар, на что уходит львиная доля мощности, а просто подогреть. Выбор, например, нагревателя мощностью от 2 кВт привёл бы к тому, что монтаж надо было бы делать толстыми жесткими проводами, расчитаными на ток от 10 А. Кроме того, потребовался бы теплоотвод большего размера, а мне хотелось сделать малогабаритное устройство.

Электробезопасность.

Хорошее заземление сделать не так просто. И единственной надежной защитой при пользовании душем может быть только полное отключение нагревателя от электросети. Исходя из этого, выбиралась конструкция – перед приёмом душа устройство надо выдернуть из розетки. Дополнительная степень защиты – сетевой выключатель с размыканием обоих проводов. Кроме того, должна быть полная гальваническая развязка датчика температуры и платы управления от сети. Понятно, что гарантировать изоляцию ТЭНа мы не можем, тем не менее, надо принять все меры по уменьшению возможности поражения током даже при грубых нарушениях техники безопасности пользователем. Здесь надо включать УЗО, но это выходит за пределы нашей темы.

Общее описание

Комнатный терморегулятор для газового котла состоит из 2 металлических полосок, использующихся в роли электрического контакта выключателя в контуре отопительной системы.

Номинальный контакт опускается при резком увеличении температуры, за счет этого происходит выключение функции обогрева. Когда микроклимат изменяется, автоматически включаются необходимые клапаны, и котел заново начинает работать.

Корпус этого устройства, как правило, изготавливается из пластика белого цвета. Для подсветки дисплея применяются светодиоды. Диапазон определения температуры в доме у многих приборов находится в пределах 0…+45°C.

Помимо экономии финансов, имеется еще масса плюсов

Обычно термостаты для газового котла отопления приобретаются для экономии средств. Снижение температуры в помещении даже на несколько градусов уменьшает потребление газа на 5%. Благодаря тому, что устройство сокращает количество циклов включений отопительного оборудования, уменьшаются и затраты хозяев на коммунальные услуги. При этом оборудование дополнительно обеспечивает сохранность всех элементов котла, которые не так сильно изнашиваются.

Преимущества использования термостата:

  • установка комфортного микроклимата — можно выбрать до 7 режимов;
  • экономия при оплате за газ (около 20%);
  • увеличение времени эксплуатации всех элементов отопительной системы, в том числе циркуляционного насоса;
  • не допускает сильную сухость воздуха и перегрев в доме;
  • снижение количества включений котельного оборудования.

Индивидуально заданные настройки температуры для термостата особенно актуальны для семей с детьми, когда все время необходимо соблюдать комфортный микроклимат, а также для тех людей, которые особо чувствительны к перепадам температур.

В этом видео вы узнаете, как работает беспроводной термостат:

Немного теории

Любой терморегулятор конструктивно включает в себя три основных блока:

  • измерительный;
  • логический;
  • исполнительный.

Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:

Рис. 1. Датчик из полуплеча резисторов

На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.

На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.

Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:

Рис. 2. Принципиальная схема терморегулятора

Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.

При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема  работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов  происходит в соответствии с заданной логикой.

Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.

Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:

  • для контроля работы электрического отопления по температурным показаниям в помещении;
  • для установки уровня температуры в самодельном инкубаторе;
  • при подключении теплого пола для контроля его работы;
  • для установки температурного диапазона работы двигателя,  с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
  • для паяльных станций или ручных паяльников;
  • в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
  • в духовках, печах как бытового, так и промышленного назначения.

Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.

Это интересно: Как найти мощность, зная силу тока, напряжение и сопротивление: внимательный взгляд на вопрос

Электронный терморегулятор своими руками, схема устройства

Как я уже говорил, схема очень проста, содержит минимум недорогих и распространённых радиодеталей. Обычно терморегуляторы строятся на микросхеме компараторе. Из-за этого устройство усложняется. Данная самоделка построена на регулируемом стабилитроне TL431:

Теперь поговорим подробнее о тех деталях, которые я использовал.

Детали устройства:

  • Трансформатор понижающий на 12 вольт
  • Диоды; IN4007, или другие с похожими характеристиками 6 шт.
  • Конденсаторы электролитические; 1000 мк, 2000 мк, 47 мк
  • Микросхема стабилизатор; 7805 или другая на 5 вольт
  • Транзистор; КТ 814А, или другой p-n-p c током коллектора не меньше 0,3 А
  • Регулируемый стабилитрон; TL431 или советский КР142ЕН19А
  • Резисторы; 4,7 Ком, 160 Ком, 150 Ом, 910 Ом
  • Резистор переменный; 150 Ком
  • Терморезистор в качестве датчика; около 50 Ком с отрицательным ТКС
  • Светодиод; любой с наименьшим током потребления
  • Реле электромагнитное; любое на 12 вольт с током потребления 100 мА или меньше
  • Кнопка или тумблер; для ручного управления

Схема терморегулятора — второй вариант

Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP

. Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен

А небольшие доработки привели к устойчивой и «помехонекапризной» работе терморегулятора в части управления

При прошивке AtMega8 следует обратить внимание на новые фьюзы. На следующем фото показана термопара К-типа, которую удобно монтировать в духовке

На следующем фото показана термопара К-типа, которую удобно монтировать в духовке

На следующем фото показана термопара К-типа, которую удобно монтировать в духовке.

Работа регулятора температуры на макетной плате понравилась — приступил к окончательной сборке на печатной плате.

Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений

В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:. В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543

В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543

В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543

— это означает датчик отключен или обрыв.

И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу:) Единственное что жена забраковала — маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор — ГУБЕРНАТОР

Обсудить статью СХЕМА ТЕРМОРЕГУЛЯТОРА

Терморегуляторы повсеместно применяются в различных целях: в автомобилях, отопительных системах различного типа, холодильных камерах и печах. Их работа заключается в отключении или включении приборов после достижения определённой температуры. Простой механический терморегулятор своими руками сделать нетрудно. Современные конструкции имеют более сложную схему, но при некотором опыте можно сделать аналоги и таких стройств.

Показать всё

Какие бывают терморегуляторы?

Широкий ассортимент терморегуляторов часто затрудняет выбор покупателей. Нужное приспособление можно купить только зная все отличия и особенности применения подобного оборудования. Правильный выбор обеспечит сохранность урожая на балконе или в хранилище в течение длительного периода складирования.

Все разнообразие терморегуляторов делится на три категории, отличающиеся друг от друга своей конструкцией и способом функционирования —  это механические, электронные модели или сенсорные аппараты.

Механический терморегулятор

Механические модели терморегуляторов поддерживают температуру самым простым и доступным для обывателя способом. Один раз указывается нужная температура, после чего достаточно просто скорректировать показатели.

Происходит нагрев и срабатывание термостата, отключающего общею систему обогревателей. Недостатком является необходимость самостоятельного отслеживания регулировки и площадь действия – помещение должно быть очень небольшим.

Механические терморегулятор для овощехранилища – прибор, регулирующий всю работу климатического оборудования

Его назначение – поддержание оптимального температурного режима в помещении, что крайне важно для заданного влажностного режима

Использование термостабилизаторов в ангарах позволит не только нагреть воздушные массы до заданных показателей температуры, но и охладить воздух при перегреве. Каждый прибор механического типа совершенно независим, иногда выпускают варианты внешних электроустановочных устройств, устанавливаемых внутри склада.

Электронный

Оборудование электронного типа отличается наличием терморезистором в качестве датчика. Эти приборы поддерживают точное задание температуры, чувствительно реагируя на малейшие колебания показателей.

Такая способность прибора отследить падение или повышение тепла выше нужных значений даже на половину градуса позволит владельцу сэкономить существенное количество финансов на электроэнергии для обогрева помещения отопительным оборудованием.

Электронный терморегулятор не используется на балконе из-за отсутствия необходимости столь точного контроля за воздухом вне квартиры. Чаще это оборудование покупается для хранилищ или теплиц как продвинутая модель с жидкокристаллическим дисплеем, постоянно отображающим текущие параметры.

Производители снабжают такие устройства дополнительными возможностями, позволяющими контролировать не только воздух, но и почву днем и ночью.

Сенсорный

Сенсорные терморегуляторы являются новейшей разработкой промышленности. Они задают график работы отопительных систем, позволяя установить разные температурные зоны в помещении. Эти приборы ставят на долгое время внутри помещения, задавая параметры за неделю или за месяц.

Особенно важна такая возможность для работы картофелехранилища, поскольку картофель перед реализацией должен набрать в течение 2 недель крахмал в своем составе и избавить от лишних сахаров при повышенных температурах (до 17 градусов тепла).

Регулятор температуры для котла отопления своими руками

Дорогие котлоагрегаты обычно оснащены качественными регуляторами температуры, потому нареканий со стороны владельцев не вызывают. Но не все могут позволить себе приобрести недешевое отопительное оборудование. Потому те, кто хоть немного разбирается в электронике и электротехнике, может самостоятельно сделать устройство, которое будет не хуже заводских дорогих терморегуляторов.

Собрать сложный, высокоточный программируемый регулятор температуры под силу не каждому. Потому стоит начать с простых схем. К тому же, комплектующие для них стоят не дорого.

Схема изготовления регулятора температуры для котла отопления

Прежде чем приступать к работе, нужно собрать все необходимое. И первая в этом списке – схема будущего терморегулятора. От нее нужно отталкиваться при подборе комплектующих и нужных деталей. Стандартный набор будет выглядеть так:

  • деталь или элемент, который будет «следить» за показателями температуры;
  • транзисторы и микросхемы, из которых будет собран блок обработки. Его функция – сравнение установленных пользователем значений с полученными;
  • деталь, отвечающая за активацию или деактивацию котла.

Пошаговая инструкция

Если человек имеет только базовые знания в области электроники и работы с электротехникой, то при сборке регулятора для котла ему лучше опираться на вариант с стабилитроном. Это полупроводниковый диод, способный пропускать электрический ток в одну сторону.

Необходимые детали для сборки терморегулятора своими руками по схеме:

  • основа – стабилитрон TL431;
  • блок питания (достаточно 12 В);
  • терморезистор – 22 Ом;
  • 2 сопротивления на 100 Ом и 10 кОм;
  • герконовое реле (РЭС-47);
  • провода для соединения деталей;
  • колодки;
  • печатная плата;
  • корпус;
  • паяльник.

Сравнивают размеры печатной платы и корпуса. При необходимости подгоняют ее по размеру. Инструментом создают несколько отверстий для крепления и также формируют токоведущие дорожки. После закрепляют колодки.
Изучают схему. В соответствии с ней на плате размещают все основные компоненты будущего терморегулятора для котла. Фиксируют их с помощью паяльника.
Соединяют линии термосопротивления, питания и управления.
Заключительный этап – проверка работоспособности устройства прибором

Здесь важно, чтобы силовое реле срабатывало при измерении сопротивления подстроечного резистора.

Терморегуляторы для теплицы своими руками из подручных материалов
Комнатные термостаты для отопления требуют постоянного воздушного потока, поэтому их нельзя закрывать плотными решетками, отгораживать шторами или мебелью. Рядом с ними нежелательно располагать осветительные и отопительные приборы, бытовую технику, излучающую тепло при работе.

Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!

По конструктивному исполнению терморегуляторы для котлов отопления бывают радиоуправляемыми и с проводным подключением для соединения кабелем. Если же вам что-то непонятно, пишите мне!

Подключение температурного датчика

Еще одна ошибка возникает при замене или подключении датчика разных производителей к одному и тому же регулятору. Дело в том, что все они имеют определенное сопротивление, соответствующее той или иной температуре.

И если без изменения настроек взять и поменять температурный датчик на другой, это может привести к некорректной работе отопления. Разница по температуре между определяемой и фактической может достигать 10 градусов!

Из-за другого сопротивления, меньше чем заводское, регулятор поймет это как завышенную температуру и даст команду на раннее отключение, хотя теплые полы будут еще не достаточно прогретыми.

Для теплого пола применяются, так называемые NTC – датчики с отрицательным температурным коэффициентом. Данный термин означает, что с повышением окружающей температуры, их сопротивление уменьшается.

Еще бывает PTC – положительный t коэфф. сопротивления. С ними происходит обратный процесс.

У продвинутых девайсов (Devireg Touch) изначально в программу настроек занесено несколько разновидностей датчиков. На этапе установки просто выбирайте требуемый.

Если вы не знаете марку, придется вручную сделать замеры сопротивления мультиметром.

Полученные данные сравниваются и проверяются, соответствуют ли они выставленным заводским настройкам или нет.

Наиболее правильной системой отопления считается та, которая имеет в каждой комнате свою собственную зону регулирования. Что это означает?

При наличии в доме всего одного терморегулятора, разброс температур в разных частях здания будет достигать 5-6 градусов.

Поэтому придется покупать и устанавливать не один, а несколько термостатов.

Можно настроить отдельные регуляторы одновременно на две зоны, при этом меняя приоритет температур. То есть, установить в термостат в одной комнате, а выносной датчик от него завести в соседнее помещение.

При этом в настройках нужно будет сделать выбор на какой элемент должен реагировать терморегулятор – на встроенный в корпус или на выносной. Добиться одинаковой температуры от одного прибора у вас не получится.

Размещать терморегуляторы в мокрых зонах запрещено. Они должны иметь соответствующий уровень влагозащиты IP и монтироваться в зоне 3.

Что это за зона, читайте в отдельной статье.

Описание работы терморегулятора для холодильника

Электрическая схема (рис. 1.35) содержит генератор на микросхеме DD1, ключи на радиоэлементах DD2.2, DD2.3 и инвертор на элементе DD2.1.

Генератор на микросхеме К176ИЕ5 обладает переключаемыми RC-цепями (Rl, R3, Сl и R2, R4, С2). модификация времязадающих цепей выполняется ключами на микросхеме К561КТ3. Управление ключами начинается сигналами с выхода пятнадцатого разряда (вывод 5) делителя сигналов DD1.

При высоком напряжении на выходе 5 к внутренним лог. элементам микросхемы DD1 подсоединяется одна RC-цепь (R2, R4, С2). При низком напряжении электросигнал переворачивается инвертором на элементе DD2.1 и, сквозь ключ DD2.2, подсоединяется другая электроцепь (Rl, R3, Cl). Для смены термостата холодильника сопротивление R4 может иметь величину от 100 килоОм и более.

При снижении температуры в холодильнике до 0 градусов, терморезистор марки ММТ4 сопротивлением 220 килоОм имел сопротивление в 400 кОм. Так как терморезистор подключен в цепи, определяющей продолжительность паузы, то чем ниже температура в холодильной камере, тем больше момент паузы в работе компрессора холодильника.

Следовательно, совершается регулировка температуры путем изменения длительности паузы в работе компрессора холодильника сопротивлением R3. Контролирующий импульс, сквозь ключ на транзисторе VT1 вкл промежуточное электрореле Kl, которое вкл более мощное реле. Промежуточное электрореле марки РЭС6, РЭС49.

Микросхему К561КТ3 возможно поменять на К176КТ1. Переключатель SA1 нужен для включения постоянного функционирования компрессора после оттаивания холодильника. Печатная плата электрореле показана на рисунке 1.36, а со стороны установки радиодеталей рисунок 1.37.

Габариты платы ограничены размерами электрореле на 220 В. На плате расположены выпрямительные диоды и емкости фильтра. Терморезистор R3 припаивают к тонкому проводу марки МГТФ и размещают в морозильнике.

Сопротивление R4 и переключатель SA1 размещают вблизи на пластмассовой боковой крышке реле. Переменное напряжение, идущее на электросхему должно быть таким, чтобы выпрямленное напряжение не было более 9 В. При меньшем напряж. микросхема К176ИЕ5 еще может работать, однако при напряж. более 9 В она может не работать.

Если вам необходим генератор крайне низкой частоты с раздельной регулировкой продолжительности высокого и низкого уровней, то сопротивление R3 может быть заменен потенциометром до 3 МОм. Частоту приблизительно высчитывают по формуле F =0,7/RC.

При расчетах продолжительности следует помнить, что момент работы или паузы будет равняться половине расчетной, поскольку берется лишь часть периода – либо высокий уровень, либо низкий.

Электролампочка, применяемая для освещения камеры холодильника, работает в специфическом режиме – в холоде. А как понятно, лампочка сгорает постоянно в момент включения, так как ее нить в холодном состоянии имеет малое сопротивление. При включении через эту нить протекает увеличенный ток, который и разрушает нить электролампочки. В камере электролампочка освещения пребывает при более низкой температуре, чем в комнате. Поэтому вероятность выхода из строя электролампочки ещё больше.Я предлагаю запитать электролампочку через диод. И хотя электролампочка при этом мигает с частотой 50 Гц, это не мешает. Я поставил тот самый диод КД105 ещё 2 года назад, и ни одна электролампочка не вышла из строя. А раньше приходилось
менять лампочки часто. Простой терморегулятор на симисторе Вставить диод КД105 очень просто. В холодильнике лампочка стоит в патроне типа “Миньон”, во вовнутрь которого совершенно помещается диод КД105, так как он имеет малые размеры. Поступаем следующим образом. Снимаем патрон “Миньон”, предварительно отключив его от сети, и в него помещаем диод. У диода предварительно откусываем выводы, оставив небольшие кончики для подпайки к ним проводов. Припаяв провода, включаем диод в разрыв одного подводящего провода последовательно с лампочкой. Подсоединяем подводящие провода. Далее патрон ставим на место и вкручиваем электролампочку. Все готово. Диод КД 105 совершенно выдерживает нагрузку, так как электролампочка в холодильнике мощностью всего 15 Вт.В.О.Рашитов, ученик 11 класса, г. Киев….

Суть устройства

Термометр, разговорный аналог — градусник, предназначен для измерения температуры окружающей среды. Первое устройство было изобретено в 1714 году немецким физиком Д. Г. Фаренгейтом. В основе своей конструкции он использовал прозрачную запаянную колбу, внутри которой находился спирт. После в качестве жидкости учёный применил ртуть. Но шкала аналогового измерителя, существующая и по сей день, была разработана лишь только через 30 лет шведским астрономом и метеорологом Андерс Цельсием. За начальные точки он предложил взять температуру тающего льда и кипения воды.

Интересным фактом является то, что изначально числом 100 была отмечена температура таяния льда, а за ноль взята точка кипения. Впоследствии шкалу «перевернули». По некоторым мнениям это сделал сам Цельсий, по другим — его соотечественники ботаник Линней и астроном Штремер.

Вскоре изготовление ртутных измерителей было широко налажено производством в промышленных масштабах. Со временем ртуть из-за своей ядовитости была заменена на спирт, а затем и вовсе был предложен новый тип устройства — цифровой. Сегодня, пожалуй, градусник стал неотъемлемым атрибутом любого жилища. По совету Всемирной организации здравоохранения была принята Минаматская конвенция, направленная на постепенный вывод из обихода ртутных градусников. Согласно ей в 2022 году использование ртути в измерителях будет полностью прекращено.

Электронные модели могут располагаться в любом месте, ведь в контролируемом помещении необходимо расположить только небольшой датчик, подключённый к устройству. Этот тип используется во многих технологических процессах промышленности, например, строительных, аграрных, энергетических. С их помощью контролируется:

  • температура воздуха в производственных и жилых зданиях;
  • проверка нагрева сыпучих продуктов;
  • состояние вязких материалов.

Принцип работы

Перед тем как непосредственно приступить к изготовлению электронного термометра, следует разобраться в принципе его действия и определиться, из каких узлов будет состоять конструкция. Промышленно выпускаемые электронные градусники различаются по своим размерам и назначению. Но все они построены на однотипном принципе действия.

Проводимость материала изменяется в зависимости от температуры окружающей среды. Основываясь на этом и проектируется схема электронного градусника. Так, чаще всего в конструкции применяется термопара. Это электронный прибор, стоящий из двух сваренных между собой металлов. На поверхности каждого из них имеется контактная площадка, подключённая к измерительной схеме. При нагревании или охлаждении контактов возникает термоэлектродвижущая сила, появление и изменение которой регистрируется платой электроники.

В устройствах нового поколения вместо термочувствительного элемента используется кремниевый диод. Полупроводниковый радиоэлемент, у которого наблюдается зависимость вольт-амперной характеристики от температурного воздействия. Иными словами, при прямом включении (направление тока от анода к катоду) значение падения напряжения на переходе изменяется в зависимости от нагрева полупроводника.

Принцип работы терморегулятора

Итак, рассмотрим как работает схема терморегулятора для инкубатора своими руками: основой данного устройства является операционный усилитель DA1, работающий в режиме компаратора напряжений. На один вход подается изменяющееся напряжение с терморезистора R2, а на второй, задаваемое переменным резистором R5 и подстроечным R4. Для точной и грубой регулировки. В зависимости от области применения, подстроечный резистор можно и исключить. При равенстве входных напряжений транзистор VT1, управляемый выходом компаратор – закрыт, на управляющем электроде VS1 ноль, а значит закрыт и симистор. При изменении температуры меняется сопротивление R2, а на разницу напряжений на входах компаратор отреагирует подачей открывающего сигнала на VT1. Появившееся на R8 напряжение откроет тиристор, пустив через нагрузку ток. Когда напряжения на входах операционного усилителя выравняются, он отключит нагрузку. Питание управляющего каскада осуществляется через выпрямительный диод VD2 и гасящее сопротивление R10. При его сверхмалом потреблении тока – это вполне допустимо, как и использование для стабилизации питающего напряжения всего одного стабилитрона VD1. К тому же, управляющие цепи запитываются через нагрузку, на которой тоже происходит падение напряжения, особенно в нагретом состоянии.

Замены деталей

Обратите внимание на мощность резистора R10 — 2Вт, так же этот резистор должен выдерживать мгновенное напряжение 400В, если такой резистор не удается найти, его можно заменить несколькими последовательно включенными резисторами на меньшую мощность и напряжение. В качестве стабилитрона VD1 можно установить BZX30C12 или любой другой стабилитрон на 12В близкий по параметрам

Вместо VD2 можно поставить диод с обратным напряжением не менее 400В и током не менее 0,3А: например из серии На место DA1 можно установить практически любой операционный усилитель, главное чтобы он работал в диапазоне питающих напряжений 10..15В. А вот однопереходный транзистор КТ117 (VT1) не такой общераспространенный компонент электронных схем (зарубежные однопереходные транзисторы: 2N6027, 2N6028), зато его можно заменить схемой из двух биполярных транзисторов разной структуры и одного резистора 47 кОм

В схеме используются распространенные КТ315 и КТ361, но вполне могут использоваться и другие маломощные комплиментарные биполярные транзисторы

А вот однопереходный транзистор КТ117 (VT1) не такой общераспространенный компонент электронных схем (зарубежные однопереходные транзисторы: 2N6027, 2N6028), зато его можно заменить схемой из двух биполярных транзисторов разной структуры и одного резистора 47 кОм. В схеме используются распространенные КТ315 и КТ361, но вполне могут использоваться и другие маломощные комплиментарные биполярные транзисторы.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий