Введение
Требования по определению тепловых нагрузок потребителей при разработке схем теплоснабжения отражены в следующих нормативных и законодательных актах: — Федеральный Закон РФ от 27.07.2010 г. № 190-ФЗ ;
— приказ Министерства регионального развития РФ от 28.02.2009 г. № 610 ;
Договорные нагрузки, как правило, рассчитываются на основании проектных данных. Проектные нагрузки на отопление, в основном, зависят от расчётных параметров микроклимата помещений, расчётной температуры наружного воздуха в отопительный период (принимаемой равной температуре наиболее холодной пятидневки с обеспеченностью 0,92 по 8. СП 131.13330.2012 ) и теплоизоляционных характеристик ограждающих конструкций. Проектные нагрузки на ГВС зависят от объёмов потребления горячей воды и её расчётной температуры.
За последние 20-30 лет многие из перечисленных выше параметров и характеристик неоднократно менялись. Менялись методики расчёта тепловых нагрузок, требования по тепловой защите ограждающих конструкций. В частности, в класс энергетической эффективности многоквартирных домов (МКД) определяется, исходя из сравнения (определение величины отклонения) фактических или расчётных (для вновь построенных, реконструированных и прошедших капитальный ремонт МКД) значений показателя удельного годового расхода энергетических ресурсов, отражающего удельный расход энергетических ресурсов на отопление, вентиляцию, ГВС и базовых значений показателя удельного расхода энергетических ресурсов в МКД. При этом фактические (расчётные) значения должны быть приведены к расчётным условиям для сопоставимости с базовыми значениями. Фактические значения показателя удельного годового расхода энергетических ресурсов определяются на основании показаний общедомовых приборов учёта.
Менялся и сам климат, в результате чего, например, для Санкт-Петербурга нормативная расчётная температура наружного воздуха за тридцать, с небольшим, лет повышена с –26 °С до –24 °С, расчётная длительность отопительного периода уменьшилась на 6 дней, а средняя температура отопительного периода увеличилась на 0,5 °С (с –1,8 до –1,3 °С).
Кроме указанных выше факторов, сами потребители тепловой энергии вносят вклад в энергосберегающие мероприятия, например, путём замены в квартирах деревянных окон на более герметичные – пластиковые.
Все эти изменения, в совокупности, способствуют тому, что фактическое теплопотребление и договорные тепловые нагрузки потребителей тепловой энергии отличаются.
Примеры разработанных Схем теплоснабжения ряда крупных населённых пунктов (например, Нижнего Новгорода) показали, что, если в качестве фактической нагрузки принимается договорная нагрузка (нагрузка, установленная в договорах теплоснабжения), это создаёт избыточный запас мощности теплоснабжающих организаций. Значительная доля нагрузки в этом случае оказывается невостребованной, но при этом сохраняются постоянные эксплуатационные расходы, что негативно отражается и на эффективности теплоснабжающих организаций (ТСО) и на потребителе тепловой энергии.
В Стратегии отмечено, что применяемая в настоящее время технология планирования систем теплоснабжения приводит к излишним инвестициям, созданию избыточной тепловой мощности во всех элементах энергосистем и сохранению низкого уровня эффективности всей российской энергетики.
Актуальность поднимаемой в статье темы обусловлена отсутствием в действующих нормативных и законодательных актах методов определения фактических тепловых нагрузок в расчётных элементах территориального деления при расчётных температурах наружного воздуха, проблемами согласования фактических тепловых нагрузок, применяемых для инвестиционного планирования в Схемах теплоснабжения с ТСО, а также последствиями неверного анализа тепловых нагрузок потребителей, установленных в договорах теплоснабжения.
Пример расчета тепловых нагрузок объекта коммерческого назначения
Это помещение на первом этаже 4-х этажного здания. Месторасположение — г. Москва.
Исходные данные по объекту
Адрес объекта | г. Москва |
Этажность здания | 4 этажа |
Этаж на котором расположены обследуемые помещения | первый |
Площадь обследуемых помещений | 112,9 кв.м. |
Высота этажа | 3,0 м |
Система отопления | Однотрубная |
Температурный график | 95-70 град. С |
Расчетный температурный график для этажа на котором находится помещение | 75-70 град. С |
Тип розлива | Верхний |
Расчетная температура внутреннего воздуха | + 20 град С |
Отопительные радиаторы, тип, количество | Радиаторы чугунные М-140-АО – 6 шт. Радиатор биметаллический Global (Глобал) – 1 шт. |
Диаметр труб системы отопления | Ду-25 мм |
Длина подающего трубопровода системы отопления | L = 28,0 м. |
ГВС | отсутствует |
Вентиляция | отсутствует |
Тепловая нагрузка по договору (час/год) | 0,02/47,67 Гкал |
Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.
Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.
Итоговый максимальный расход — 0,008958 Гкал/час или 23 Гкал/год.
В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.
Современные отопительные элементы
Крайне редко можно сегодня увидеть дом, в котором отопление выполняется исключительно воздушными источниками. К ним можно отнести электрические отопительные приборы: тепловентиляторы, радиаторы, УФО, тепловые пушки, электрические камины, печи. Рациональнее всего использовать их в качестве вспомогательных элементов при стабильно работающей основной отопительной системе. Причина их «второстепенности» — достаточно высокая себестоимость электроэнергии.
Основные элементы системы отопления
При планировании отопительной системы любого типа важно знать, что есть общепринятые рекомендации, касающиеся удельной мощности используемого нагревательного котла. В частности, для северных регионов страны она составляет примерно 1,5 – 2,0 кВт, в центральных — 1,2 – 1,5 кВт, в южных — 0,7 – 0,9 кВт. При этом перед тем, как рассчитать систему отопления, для вычисления оптимальной мощности котла следует воспользоваться формулой:
При этом перед тем, как рассчитать систему отопления, для вычисления оптимальной мощности котла следует воспользоваться формулой:
W кот. = S*W / 10.
Расчет системы отопления зданий, а именно – мощности котла – важный этап при планировании создания отопительной системы
При этом важно обратить особенное внимание на следующие параметры:
- суммарная площадь всех помещений, которые будут подключены к отопительной системе – S;
- рекомендованная удельная мощность котла (параметр, зависящий от региона).
Допустим, что необходимо рассчитать емкость системы отопления и мощность котла для дома, в котором суммарная площадь помещений, которые необходимо отапливать S = 100 м2. При этом возьмем рекомендованную удельную мощность для центральных регионов страны и подставим данные в формулу. Получим:
W кот. = 100*1,2/10=12 кВт.
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материалов
Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданий
Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м² ;
- Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Анатолий Коневецкий, Крым, Ялта
Анатолий Коневецкий, Крым, Ялта
Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.
Анатолий Коневецкий, Крым, Ялта
Основные факторы
Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:
— Назначение здания: жилое или промышленное.
— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.
— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.
— Наличие комнат специального назначения (баня, сауна и пр.).
— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.
— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.
— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.
— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.
— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.
— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.
Стандартная методика и стадии процесса
Согласно методике гидравлического расчета тепловых сетей, его осуществляют в две стадии:
Построение схемы теплосетей, на которой нумеруются участки, вначале в области центральной магистрали – более длинной и объемной по нагрузке линии сети от места подсоединения до более удаленного объекта потребления. Расчет потерь напора каждого участка трубы, схемы. Его осуществляют с использованием таблиц и номограмм, которые обозначены требованиями государственных норм и стандартов.
Первым осуществляют вычисления для основной магистрали по расходам, установленным по схеме. При этом пользуются справочными данными удельных потерь напора в сетях.
Далее, вычислив диаметры труб, рассчитывают:
Численность компенсаторов по схеме. Сопротивления на фактически установленных элементах теплосети.
Потери напора высчитывают по формулам и номограммам. Затем, имея эти данные по всей сети, рассчитывают гидромеханический режим отдельных участков от места дробления потока вплоть до конечного абонента.
Расчеты увязывают с выбором диаметров труб ответвлений. Нестыковка не более 10 %. Лишний напор в теплосети погашается на элеваторных узлах, дроссельными соплами или авторегуляторами во внутридомовых исполнительных пунктах.
Вам будет интересно:Винт самолета: название, классификация и характеристика
При имеющемся располагаемом давлении магистральной теплосети и ответвлений, вначале устанавливают приблизительные удельные сопротивления Rm, Па/м.
В расчетах используют таблицы, номограммы для гидравлического расчета трубопроводов тепловых сетей и другую справочную литературу, обязательную для всех этапов, ее легко найти в интернете и специальной литературе.
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материалов
Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданий
Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м² ;
- Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Анатолий Коневецкий, Крым, Ялта
Анатолий Коневецкий, Крым, Ялта
Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.
Анатолий Коневецкий, Крым, Ялта
Последовательность шагов расчета
Говоря о расчете системы отопления, отмечаем что эта процедура является наиболее неоднозначной и важной в части проектирования. Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:. Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:
Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:
- установить тепловой баланс во всех и конкретно каждой комнаты квартиры;
- одобрать терморегуляторы, клапаны и регуляторы давления;
- выбрать радиаторы, теплообменные поверхности, теплоотдающие панели;
- определить участки системы с максимальным и минимальным расходом носителя тепла.
Кроме того, надо определить общую схему транспортировки теплоносителя: полный и малый контур, однотрубная система или двухтрубная магистраль.
В результате проведения гидравлического расчёта получаем несколько важных характеристик гидравлической системы, которые дают ответы на следующие вопросы:
- какая должна быть мощность источника отопления;
- какой расход и скорость теплоносителя;
- какой нужен диаметр основной магистрали теплового трубопровода;
- какие возможные потери теплоты и самой массы теплоносителя.
Еще одним важным аспектом гидравлического расчёт является процедура баланса (увязки) всех частей (веток) системы во время экстремальных тепловых режимов с помощью регулирующих приборов.
Выделяют несколько основных видов отопительных изделий: чугунные и алюминиевые многосекционные, стальные панельные, биметаллические радиаторы и ковекторы. Но наиболее распространёнными являются алюминиевые многосекционные радиаторы
Расчетной зоной трубопроводной магистрали есть участок с постоянным диаметром самой магистрали, а также неизменяемым расходом горячей воды, который определён по формуле теплового баланса комнат. Перечисление расчётных зон начинается от насоса или источника тепла.
Определение количества газорегуляторных пунктов ГРП
Газорегуляторные пункты предназначены для снижения давления газа и поддержания его на заданном уровне независимо от расхода.
При известном расчетном расходе газообразного топлива районом города определяется количество ГРП, исходя из оптимальной производительности ГРП (V=1500-2000 м3/час) по формуле:
n = , (27)
где n — количество ГРП, шт.;
Vр — расчетный расход газа районом города, м3/час;
Vопт — оптимальная производительность ГРП, м3/час;
n=586,751/1950=3,008 шт.
После определения количества ГРП намечают их месторасположение на генплане района города, устанавливая их в центре газифицируемой площади на территории кварталов.
Выводы и полезное видео по теме
Следует отметить, что полномасштабный расчёт даже самых простых решений сопровождается массой вычисляемых параметров. Конечно же, вычислять всё без исключения справедливо при условии организации конструкции отопления, близкой к идеальной структуре. Однако в реальности ничего идеального нет.
Поэтому зачастую полагаются на расчёты как таковые, а также на практические примеры и на результаты работы этих примеров. Особо популярен такой подход для частного домостроения.
Есть, что дополнить, или возникли вопросы по расчету однотрубной системы отопления? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом обустройства отопительного контура. Форма для связи находится в нижнем блоке.
- https://www.baurum.ru/_library/
- https://teplo.guru/sistemy/raschet-otopleniya-chastnogo-doma.html
- http://ventilationpro.ru/sistemy-otopleniya/samostoyatelnyjj-raschet-i-montazh/raschet-odnotrubnojj-sistemy-otopleniya-s-primerami.html
- https://sovet-ingenera.com/otoplenie/project/raschet-odnotrubnoj-sistemy-otopleniya.html