Расчет системы отопления дома
Расчёт систем отопления частного дома – самое первое, с чего начинается проектирование такой системы. Мы будем говорить с вами о системе воздушного отопления – именно такие системы проектирует и устанавливает наша компания как в частных домах, так и в коммерческих зданиях и производственных помещениях. Отопление воздухом имеет массу преимуществ по сравнению с традиционными системами водяного отопления – более подробно об этом вы можете прочитать здесь. |
Расчет системы – калькулятор онлайн
Для чего необходим предварительный расчет отопления в частном доме? Это требуется для выбора правильной мощности необходимого отопительного оборудования, позволяющей реализовать систему отопления, сбалансировано обеспечивающую теплом соответствующие помещения частного дома. Грамотный выбор оборудования и правильный расчёт мощности системы отопления частного дома позволят рационально компенсировать теплопотери от ограждающих конструкций и притока уличного воздуха на нужды вентиляции. Сами формулы для такого расчета достаточно сложны – поэтому мы предлагаем Вам воспользоваться онлайн расчетом (выше), или заполнив анкету (ниже) – в таком случае расчет произведет наш главный инженер, и эта услуга – совершенно бесплатная.
Как рассчитать отопление частного дома?
С чего начинается такой расчет? Во-первых, требуется определить максимальные теплопотери объекта (в нашем случае – это частный загородный дом) при наихудших погодных условиях (такой расчет ведется с учетом самой холодной пятидневки для данного региона). Рассчитывать систему отопления частного дома на коленке не получится – для этого используют специализированные формулы расчета и программы, позволяющие построить расчет на основе исходных данных о конструкции дома (стен, окон, кровли и т.д.). В результате полученных данных выбирается оборудование, полезная мощность которого должна быть больше или равна рассчитанному значению. В ходе расчёта системы отопления выбирается нужная модель канального воздухонагревателя (обычно это газовый воздухонагреватель, хотя мы можем использовать и другие типы обогревателей – водяной, электрический). Затем вычисляется максимальная производительность обогревателя по воздуху – иными словами, какой объем воздуха вентилятор данного оборудования нагнетает в единицу времени. Следует помнить, что производительность оборудования отличается в зависимости от предусмотренного режима его использования: так, например, при кондиционировании производительность больше, чем при отоплении. Поэтому если в перспективе планируется использовать кондиционер, то за исходное значение нужной производительности необходимо принимать расход воздуха именно в этом режиме – если же нет, то достаточно только значения в режиме отопления.
На следующем этапе расчёт систем воздушного отопления частного дома сводится к правильному определению конфигурации воздухораспределительной системы и расчёту сечений воздуховодов. Для наших систем мы используем бесфланцевые прямоугольные воздуховоды прямоугольного сечения – они просты в сборке, надежны и удобно располагаются в пространстве между конструктивными элементами дома. Поскольку воздушное отопление является низконапорной системой, то при ее построении необходимо учитывать определённые требования, например, минимизировать количество поворотов воздуховода – как магистрального, так и оконечных веток, идущих к решёткам. Статическое сопротивление трассы не должно превышать 100 Па. На основе производительности оборудования и конфигурации воздухораспределительной системы рассчитывается нужное сечение магистрального воздуховода. Количество оконечных веток определяется исходя из количества подающих решёток, необходимых для каждого конкретного помещения дома. В системе воздушного отопления дома обычно используются стандартные подающие решётки размером 250х100 мм с фиксированной пропускной способностью – она вычисляется с учетом минимальной скорости движения воздуха на выходе. Благодаря такой скорости в помещениях дома не ощущается движение воздуха, отсутствуют сквозняки и посторонний шум.
Конечная стоимость отопления частного дома рассчитывается после окончания этапа проектирования на основании спецификации с перечнем устанавливаемого оборудования и элементов системы воздухораспределения, а также дополнительных устройств контроля и автоматики. Чтобы произвести первоначальный расчет стоимости отопления, вы можете воспользоваться анкетой на расчет стоимости системы отопления ниже: |
онлайн-калькулятором
Цель теплотехнического расчета
От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и перекрытиях.
Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.
Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.
По регламенту ГОСТ 30494-96 температурные значения внутри помещений. В среднем она равна 21⁰. При этом относительная влажность обязана пребывать в комфортных рамках, а это в среднем 37%. Наибольшая скорость перемещения массы воздуха — 0,15 м/с
Теплотехнический расчет ставит перед собой цели определить:
- Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
- Настолько полно обеспечивается комфортный микроклимат внутри здания?
- Обеспечивается ли оптимальная тепловая защита конструкций?
Основной принцип — соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой.
На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.
Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.
Параметры для выполнения расчетов
Чтобы выполнить теплорасчет, нужны исходные параметры.
Зависят они от ряда характеристик:
- Назначения постройки и ее типа.
- Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
- Географических параметров будущего дома.
- Объема здания, его этажности, площади.
- Типов и размерных данных дверных, оконных проемов.
- Вида отопления и его технических параметров.
- Количества постоянных жильцов.
- Материала вертикальных и горизонтальных оградительных конструкций.
- Перекрытия верхнего этажа.
- Оснащения горячим водоснабжением.
- Вида вентиляции.
Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.
Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.
В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.
Ручной расчет теплопотерь
Чтобы рассчитать теплопотери дома ручным способом, понадобится найти значения утечки тепла через ограждающую конструкцию, вентиляцию и канализационную систему.
Теплопотери через ограждающую конструкцию
У любого здания окружающая конструкция состоит из разных слоев материала. Поэтому для более точного расчета, необходимо найти теплопотери для каждого слоя отдельно. Вычисляются они по следующей формуле – Q окр.к. = (A / D) *dT, где:
- D – сопротивление теплового потока;
- dT – разность наружной и внутренней температуры помещения;
- А – площадь здания.
Все значения измеряются соответствующими приборами, а для нахождения сопротивления теплового потока, применяется формула — D = Z / Кф., где: Кф. – коэффициент теплопроводности материала (он производителями указан в паспорте материала), а Z – толщина его слоя.
Если здание состоит из нескольких этажей, посчитать ручным способом теплопотери через ограждающую конструкцию будет достаточно долго и неудобно. В связи с этим, можно будет воспользоваться следующей таблицей, где специалисты вывели средние
Неугловая комната. | Комната, у которой угол граничит с улицей. | Неугловая комната. | |||
Кирпичная стена шириной — 67 см. и с внутренней отделкой. штукатурки. | -25 -27 -29 -31 | 77 84 88 90 | 76 82 84 86 | 71 76 79 81 | 67 72 76 77 |
Кирпичная стена шириной — 54 см. с внутренней отделкой. | -25 -27 -29 -30 | 92 98 103 104 | 91 97 101 102 | 83 87 92 94 | 80 88 90 91 |
Деревянная стена шириной — 25 см с внутренней обшивкой. | -25 -27 -29 -30 | 62 66 68 70 | 61 64 66 67 | 56 59 61 62 | 53 57 58 60 |
Деревянная стена шириной — 20 см с внутренней обшивкой. | -25 -27 -29 -30 | 77 84 88 89 | 77 82 85 87 | 70 76 79 80 | 67 73 76 77 |
Каркасная стена шириной — 20 см. с утеплителем. | -25 -27 -29 -30 | 63 66 69 71 | 61 64 67 69 | 56 59 62 63 | 55 57 60 62 |
Пенобетонная стена шириной — 20 см с внутренней отделкой. | -25 -27 -29 -30 | 93 98 102 105 | 90 95 99 102 | 88 89 91 94 | 81 85 89 91 |
Утечка тепла через вентиляцию
У каждого помещения через ограждающую конструкцию, циркулирует поток воздуха. Чтобы рассчитать, сколько происходит теплопотерь при вентиляции, используется формула тепловых зданий:
Qвент. = (В* Кв / 3600)* W * С *dT, где:
- В — кубические метры длинны и ширины помещения;
- Кв — кратность подаваемого и удаляемого воздуха помещения за 1 час;
- W — плотность воздуха = 1,2047 кг/куб. м;
- С — теплоемкость воздуха = 1005 Дж/кг*С.
В зданиях с паропроницаемыми ограждениями, воздухообмен происходит – 1 раз в час. У зданий, которые выполнены по «Евростандарту», кратность подаваемого и удаляемого воздуха увеличивается до – 2. Таким образом, обмен воздуха за 1 час происходит 2 раза.
Утечки тепла через канализацию
Для комфортного проживания жильцы домов нагревают воду для быта и гигиены. Также частично от окружающей среды нагревается вода в бочке и сифоне унитаза. Все полученное тепло после эксплуатации вместе с водой уходит через стоки трубопровода
Qкан. = (Vвод. * T * Р * С * dT) / 3 600 000, где:
- Vвод. — общий потребляемый кубический объем воды за 30 дней;
- Р — плотность жидкости = 1 тонна/куб. м;
- С — теплоемкость жидкости = 4183 Дж/кг*С;
- 3 600 000 — величина джоулей (Дж) в 1-м кВт*ч.;
- dT — разность температуры между поступающей и нагретой водой.
Подсчет dT проводится следующим образом. Допустим, при поступлении в помещение вода имеет температуру +8 градусов, после нагрева ее температура составляет + 30 градусов. Следовательно, чтобы найти разницу, нужно из 30 вычесть 8. Получившийся итог 21 градус и следует принимать за dT.
Информация по назначению калькулятора
Калькулятор теплопотерь предназначен для расчета примерного количества тепла, теряемого помещением через ограждающие конструкции в единицу времени в самую холодную пятидневку выбранного населенного пункта (по актуализированной редакции СП 131.13330.2012).
Информация актуальна на 2023 год.
Данные расчеты являются достаточно приблизительными, так как невозможно учесть абсолютно все факторы, влияющие на тепловые потери, а полученные результаты необходимо проверять экспериментально, для подтверждения расчетов. Ошибки в конструкции стен так же могут значительным образом повлиять на фактические теплопотери. Например, образование конденсата внутри стеновой конструкции может значительно увеличить теплопроводность теплоизолирующего материала в зимний период.
Также на общие теплопотери влияют разность наружной и внутренней температур, солнечная радиация, атмосферные осадки, ветра и другие факторы. Моделирование процессов тепловых потерь целого здания является актуальной проблемой. Зная теплопотери здания, можно переходить к выбору мощности и вариантов системы отопления.
Для снижения тепловых потерь здания необходимо использовать максимально эффективные теплоизоляционные материалы
Особенно стоит уделить внимание кровле, так как именно через нее наружу уходит наибольшее количество тепла из помещения. Для поддержания комфортного внутреннего микроклимата, а так же снижения финансовых затрат на отопление, необходимо соблюдать правильный баланс утепления всех ограждающих конструкций
Примерное минимальное качество утепления наружных стен
- Хорошее:
~ 300 мм Дерево + 100 мм Полистирол/Каменная Вата
~ 500 мм Газо- и пенобетон
~ 300 мм Газо- и пенобетон + 100 мм Полистирол/Каменная Вата
~ 400 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата
~ 250 мм Кирпич + 200 мм Полистирол/Каменная Вата
Среднее:
~ 300 мм Дерево + 50 мм Полистирол/Каменная Вата
~ 400 мм Газо- и пенобетон
~ 300 мм Газо- и пенобетон + 50 мм Полистирол/Каменная Вата
~ 200 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата
~ 250 мм Кирпич + 100 мм Полистирол/Каменная Вата
Плохое:
~ 200 мм Дерево
~ 200 мм Газо- и пенобетон
~ 100 мм Газо- и пенобетон + 120 мм Кирпич
~ 300 мм Керамзитобетон
~ 250 мм Кирпич
1.3 Расчет наружной стены на сопротивление воздухопроницанию
Характеристики
рассчитываемой конструкции приведены- рисунок 1 и таблица 1.1:
Сопротивление
воздухопроницанию ограждающих конструкций Rв должно быть не менее
требуемого сопротивления воздухопроницанию Rв.тр, м2×ч×Па/кг, определяемого по
формуле 8.1 [Rв≥Rв.тр]
Расчетную
разность давления воздуха на наружной и внутренней поверхностях ограждающей
конструкции Dp, Па, следует определять по формулам 8.2; 8.3
Н=6.2,
мн=-24, °С, для средней температуры наиболее холодной пятидневки
обеспеченностью 0,92 по таблице 4.3;
vcp=4.0,
м/с, принимаемая по таблице 4.5 ;
rн– плотность наружного воздуха, кг/м³, определяемая по формуле:
сн=+0.8
по приложение 4, Номер схемы 1
сп=-0.6,
при h1/l
=6.2/6= 1.03 и b/l=12/6=2 по приложение 4, Номер схемы 1;
Рисунок
2 Схемы к определению сн,спиki
ki=0.536 (определяется интерполяцией), по Таблица 6, для типа местности
«В» и z=H=6.2 м.
нopм=0,5, кг/(м²·ч), принимаем по таблице 8.1 .
Так
как Rв= 217.08≥Rв.тр=
41.96 то конструкция стены удовлетворяет п.8.1.
1.4 Построение графика распределения температуры в наружной
стене
. Температура воздуха в расчетной точке определяется по формуле 28 :
гдеτn
– температура на внутренней поверхности n-го слоя
ограждения, считая нумерацию слоев от внутренней поверхности ограждения, °С;
– сумма
термических сопротивлений n-1 первых слоев ограждения, м²·°С/Вт.
R – термическое
сопротивление однородной ограждающей конструкции, а также слоя многослойной
конструкции R, м²·° С/Вт,
следует определять по формуле 5.5 ;в – расчетная температура
внутреннего воздуха, °С, принимаемая в соответствии с нормами технологического
проектирования (см. таблица 4.1 );н – расчетная зимняя
температура наружного воздуха, °С, принимаемая по таблице4.3с учетом тепловой
инерции ограждающих конструкций D (за исключением заполнений проемов) по
таблице 5.2 ;
aв – коэффициент теплоотдачи внутренней поверхности
ограждающей конструкции, Вт/(м²×°С),
принимаемый по таблице 5.4.
2.
Определяем тепловую инерцию:
Расчет
приведен в п.2.1Расчет конструкции пола 1-го этажа на сопротивление
теплопередаче (выше):
3.
Определяем среднюю температуру наружного воздуха:н=-26°C – по таблице
4.3 для «Средняя температура трех наиболее холодных суток обеспеченностью
0,92»;в=18˚С (табл. 4.1 );т=2.07 м²·°С/Вт (см. п.2.1);
aв=8.7, Вт/(м²×°С), по
таблице 5.4 ;
.
Определяем температуру на внутренней поверхности ограждения(сечение 1-1):
;
.
Определяем температуру в сечении2-2:
;
.
Определяем температуру в сечении3-3 и 4-4:
.
Определяем температуру в сечении5-5:
.
Определяем температуру в сечении6-6:
.
Определяем температуру наружного воздуха (проверка):
.
Строим график изменения температур:
Рисунок
3 График распределения температур (конструкция см.Рисунок1 и Таблица 1.1.)
2. Теплотехнический расчет конструкции пола 1-го этажа
Теплотехнический расчет: пример расчета для наружных стен
Для расчета необходимо определить следующие основные параметры:
tв = 20°C – это температура воздушного потока внутри здания, которая принимается для расчета ограждений по минимальным значениям наиболее оптимальной температуры соответствующего здания и сооружения. Принимается она в соответствии с ГОСТом 30494-96.
- По требованиям ГОСТа 30494-96 влажность в помещении должна составлять 60%, в результате в помещении будет обеспечен нормальный влажностный режим.
- В соответствии с приложением B СНиПа 23-02-2003, зона влажности сухая, значит, условия эксплуатации ограждений – A.
- tн = -34 °C – это температура наружного воздушного потока в зимний период времени, которая принимается по СНиП исходя из максимально холодной пятидневки, имеющей обеспеченность 0,92.
- Zот.пер = 220 суток – это длительность отопительного периода, которая принимается по СНиПу, при этом среднесуточная температура окружающей среды ≤ 8 °C.
- Tот.пер. = -5,9 °C – это температура окружающей среды (средняя) в отопительный период, которая принимается по СНиП, при суточной температуре окружающей среды ≤ 8 °C.
Теплотехнический калькулятор
λA = | Вт/(м °С) |
λB = | Вт/(м °С) |
Плотность | кг/м 3 |
Кратность | мм |
Паропроницание | мг / (м·ч·Па) |
Δw | % |
Шаг каркаса, s | мм |
Ширина элемента каркаса, a | мм |
λkА каркаса | Вт/(м °С) |
λkБ каркаса | Вт/(м °С) |
Шаг каркаса, s | мм |
Ширина элемента каркаса, a | мм |
λkА каркаса | Вт/(м °С) |
λkБ каркаса | Вт/(м °С) |
Длина блока, a | мм |
Высота блока, b | мм |
Толщина швов, c | мм |
λkА шва | Вт/(м °С) |
λkБ шва | Вт/(м °С) |
λсвА арматуры | Вт/(м °С) |
λсвБ арматуры | Вт/(м °С) |
Площадь сечения, Sсв ср | мм 2 |
Площадь сечений связей (арматуры), приходящихся на 1 погонный метр сечения шва. Включает только те связи, которые перпендикулярны плоскости стены. |
Диаметр выреза, d | мм |
Расстояние между вырезами, s | мм |
Толщина плиты, δ | мм |
Размер, a | мм |
Размер, h | мм |
Толщина листа, δ | мм |
Пожалуйста, выберите материал.
Калькулятор теплопотерь здания
Укажите размеры и типы стен.
На улице средняя температура за день | |
Внутри средняя температура за день | |
Стены Только выходящие на улицу стены! | Добавьте выходящие на улицу стены и укажите, из каких слоёв состоит стена
|
Комнаты | Добавьте все используемые помещения, даже коридоры, и укажите, из каких слоёв состоят перекрытия
|
Тепловые потери: Через стены: — кВт Через окна: — кВт Через верх: — кВт Через низ: — кВт Через вентиляцию: — кВт Итого: -кВт Нажмите на кнопку для расчёта |
Однако из чего же складывается микроклимат в жилой комнате? Комфортные условия для жильцов зависят от температуры воздуха tв, его влажности φв и движения vв, возникающего при наличии вентиляции. И еще один фактор влияет на уровень тепла – радиационное излучение тепла или холода tр, свойственное нагреваемым (охлаждаемым) естественным путем предметам и поверхностям в обстановке. По нему определяется результирующая температура tп, с помощью формулы [tп = (tр + tв)/2]. Все эти показатели для разных помещений можно рассмотреть в приведенной ниже таблице.
Оптимальные параметры микроклимата жилых зданий по ГОСТ 30494-96
Период года | Помещение | Температура внутреннего воздуха tв , °С | Результирующая температура tп , °С | Относит. влажность внутреннего воздуха φв, % | Скорость движения воздуха v в , м/с |
Не более | |||||
Холодный | Жилая комната | 20-22 | 19-20 | 45-30 | 0,15 |
То же, в районах с t 5 от -31 °С | 21-23 | 20-22 | 45-30 | 0,15 | |
Кухня | 19-21 | 18-20 | НН | 0,15 | |
Туалет | 19-21 | 18-20 | НН | 0,15 | |
Ванная, совмещенный санузел | 24-26 | 23-27 | НН | 0,15 | |
Помещение для отдыха и учебных занятий | 20-22 | 19-21 | 45-30 | 0,15 | |
Межквартирный коридор | 18-20 | 17-19 | 45-30 | 0,15 | |
Вестибюль, лестничная клетка | 16-18 | 15-17 | НН | 0,2 | |
Кладовая | 16-18 | 15-17 | НН | НН | |
Теплый | Жилая комната | 22-25 | 22-24 | 60-30 | 0,2 |
Буквами НН обозначаются ненормируемые параметры.
Теплопотери в жилом доме – понятие и влияние на условия проживания
Теплопотерей называется уровень тепла, утрачиваемого помещением через стены, окна, потолок и пол за определенное количество времени. Измеряется данная величина в ваттах на квадратный метр, и зависит от разницы внутренней и внешней температуры воздуха – чем она ниже, тем выше энергоэффективность здания.
Годовая разница природных температур составляет порядка 60 градусов – от –30° в зимний период до +30° летом. Комфортной температурой для человека считается уровень в +18/+24°, который необходимо поддерживать в жилых зданиях. Добиваются этого за счет стройматериалов (теплоизолирующих потолков, стен и полов, энергосберегающих стекол), систем обогрева, проветривания или кондиционирования. Законодательно установлены строительные правила, нормы и стандарты, определяющие тепловую защиту строений.
Расчеты: откуда наибольшие теплопотери в каркасном утепленном доме и как их снизить с помощью прибора
Наиболее важный процесс в проектировании обогрева – расчеты будущей системы. Ведется расчёт теплопотерь через ограждающие конструкции, определяются дополнительные потери и поступления тепла, определяется необходимое количество обогревательных приборов выбранного типа и т.д. Расчет коэффициента теплопотерь дома должен делать опытный человек.
Уравнение теплового баланса играет важную роль в определении теплопотерь и разработки способов их компенсации. Формула теплового баланса приведена ниже:
V –объем помещения, вычисляемый с учетом площади помещения и высоты потолков. T – разница между внешней и внутренне температурой здания. К – коэффициент потери тепла.
Формула теплового баланса дает не самые точные показатели, потому применяется редко.
Основное значение, которое используется при вычислении – тепловая нагрузка на обогреватели. Для ее определения используются значения потерь тепла и мощности обогревательного котла. Формула тепловой мощности позволяет рассчитать то количество тепла, которое будет вырабатывать система обогрева, имеет вид:
Теплопотери объема ( ) умножаются на 1.2. Это запасной тепловой коэффициент – константа, помогающая компенсировать некоторые теплопотери, носящие случайный характер (длительное открытие дверей или окон и др.).
Рассчитать потери тепла достаточно сложно. В среднем, различные ограждающие конструкции способствуют потери разного количества энергии. 10 % теряется сквозь крышу, 10% — сквозь пол, фундамент, 40% — стены, по 20% — окна и плохая изоляция, система вентиляции и др. Удельная тепловая характеристика различных материалов неодинакова. Потому в формуле прописаны коэффициенты, позволяющие учесть все нюансы. Таблица ниже показывает значения коэффициентов, необходимые, чтобы провести расчёт количества теплоты.
Формула потерь тепла следующая:
В формуле удельная теплопотеря, равна 100 Ватт на кв. м. Пл – площадь помещения, также участвующая в определении. Теперь может быть применена формула для расчета количества теплоты, необходимое для выделения котлом.
Последовательность действий
Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.
Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.