Приложение А (обязательное)
Таблица А.1
Материалы (конструкции) | Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации | |
А | Б | |
1 Пенополистирол | 2 | 10 |
2 Пенополистирол экструзионный | 2 | 3 |
3 Пенополиуретан | 2 | 5 |
4 Плиты из резольно-фенолформальдегидного пенопласта | 5 | 20 |
5 Перлитопластбетон | 2 | 3 |
6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс» | 5 | 15 |
7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс» | ||
8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна) | 2 | 5 |
9 Пеностекло или газостекло | 1 | 2 |
10 Плиты древесно-волокнистые и древесно-стружечные | 10 | 12 |
11 Плиты фибролитовые и арболит на портландцементе | 10 | 15 |
12 Плиты камышитовые | 10 | 15 |
13 Плиты торфяные теплоизоляционные | 15 | 20 |
14 Пакля | 7 | 12 |
15 Плиты на основе гипса | 4 | 6 |
16 Листы гипсовые обшивочные (сухая штукатурка) | 4 | 6 |
17 Изделия из вспученного перлита на битумном связующем | 1 | 2 |
18 Гравий керамзитовый | 2 | 3 |
19 Гравий шунгизитовый | 2 | 4 |
20 Щебень из доменного шлака | 2 | 3 |
21 Щебень шлакопемзовый и аглопоритовый | 2 | 3 |
22 Щебень и песок из вспученного перлита | 5 | 10 |
23 Вермикулит вспученный | 1 | 3 |
24 Песок для строительных работ | 1 | 2 |
25 Цементно-шлаковый раствор | 2 | 4 |
26 Цементно-перлитовый раствор | 7 | 12 |
27 Гипсоперлитовый раствор | 10 | 15 |
28 Поризованный гипсоперлитовый раствор | 6 | 10 |
29 Туфобетон | 7 | 10 |
30 Пемзобетон | 4 | 6 |
31 Бетон на вулканическом шлаке | 7 | 10 |
32 Керамзитобетон на керамзитовом песке и керамзитопенобетон | 5 | 10 |
33 Керамзитобетон на кварцевом песке с поризацией | 4 | 8 |
34 Керамзитобетон на перлитовом песке | 9 | 13 |
35 Шунгизитобетон | 4 | 7 |
36 Перлитобетон | 10 | 15 |
37 Шлакопемзобетон (термозитобетон) | 5 | 8 |
38 Шлакопемзопено- и шлакопемзогазобетон | 8 | 11 |
39 Бетон на доменных гранулированных шлаках | 5 | 8 |
40 Аглопоритобетон и бетон на топливных (котельных) шлаках | 5 | 8 |
41 Бетон на зольном гравии | 5 | 8 |
42 Вермикулитобетон | 8 | 13 |
43 Полистиролбетон | 4 | 8 |
44 Газо- и пенобетон, газо- и пеносиликат | 8 | 12 |
45 Газо- и пенозолобетон | 15 | 22 |
46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе | 1 | 2 |
47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе | 1,5 | 3 |
48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе | 2 | 4 |
49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе | 2 | 4 |
50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе | 2 | 4 |
51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе | 1,5 | 3 |
52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе | 1 | 2 |
53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе | 2 | 4 |
54 Древесина | 15 | 20 |
55 Фанера клееная | 10 | 13 |
56 Картон облицовочный | 5 | 10 |
57 Картон строительный многослойный | 6 | 12 |
58 Железобетон | 2 | 3 |
59 Бетон на гравии или щебне из природного камня | 2 | 3 |
60 Раствор цементно-песчаный | 2 | 4 |
61 Раствор сложный (песок, известь, цемент) | 2 | 4 |
62 Раствор известково-песчаный | 2 | 4 |
63 Гранит, гнейс и базальт | ||
64 Мрамор | ||
65 Известняк | 2 | 3 |
66 Туф | 3 | 5 |
67 Листы асбестоцементные плоские | 2 | 3 |
Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость
Сравнение утеплителей по теплопроводности
Пенополистирол (пенопласт)
Плиты пенополистирола (пенопласта)
Это самый популярный теплоизоляционный материал в России, благодаря своей низкой теплопроводности, невысокой стоимости и легкости монтажа. Пенопласт изготавливается в плитах толщиной от 20 до 150 мм путем вспенивания полистирола и состоит на 99% из воздуха. Материал имеет различную плотность, имеет низкую теплопроводность и устойчив к влажности.
Благодаря своей низкой стоимости пенополистирол имеет большую востребованность среди компаний и частных застройщиков для утепления различных помещений. Но материал достаточно хрупкий и быстро воспламеняется, выделяя токсичные вещества при горении. Из-за этого пенопласт использовать предпочтительнее в нежилых помещениях и при теплоизоляции не нагружаемых конструкций — утепление фасада под штукатурку, стен подвалов и т.д.
Экструдированный пенополистирол
Пеноплэкс (экструдированный пенополистирол)
Экструзия (техноплэкс, пеноплэкс и т.д.) не подвергается воздействию влаги и гниению. Это очень прочный и удобный в использовании материал, который легко режется ножом на нужные размеры. Низкое водопоглощение обеспечивает при высокой влажности минимальное изменение свойств, плиты имеют высокую плотность и сопротивляемость сжатию. Экструдированный пенополистирол пожаробезопасен, долговечен и прост в применении.
Все эти характеристики, наряду с низкой теплопроводностью в сравнении с прочими утеплителями делает плиты техноплэкса, URSA XPS или пеноплэкса идеальным материалом для утепления ленточных фундаментов домов и отмосток. По заверениям производителей лист экструзии толщиной в 50 миллиметров, заменяет по теплопроводности 60 мм пеноблока, при этом материал не пропускает влагу и можно обойтись без дополнительной гидроизоляции.
Минеральная вата
Плиты минеральной ваты Изовер в упаковке
Минвата (например, Изовер, URSA, Техноруф и т.д.) производится из натуральных природных материалов – шлака, горных пород и доломита по специальной технологии. Минеральная вата имеет низкую теплопроводность и абсолютно пожаробезопасна. Выпускается материал в плитах и рулонах различной жесткости. Для горизонтальных плоскостей используются менее плотные маты, для вертикальных конструкций используют жесткие и полужесткие плиты.
Однако, одним из существенных недостатков данного утеплителя, как и базальтовой ваты является низкая влагостойкость, что требует при монтаже минваты устройства дополнительной влаго- и пароизоляции. Специалисты не рекомендуют использовать минеральная вату для утепления влажных помещений – подвалов домов и погребов, для теплоизоляции парилки изнутри в банях и предбанников. Но и здесь ее можно использовать при должной гидроизоляции.
Базальтовая вата
Плиты базальтовой ваты Роквул в упаковке
Данный материал производится расплавлением базальтовых горных пород и раздуве расплавленной массы с добавлением различных компонентов для получения волокнистой структуры с водоотталкивающими свойствами. Материал не воспламеняется, безопасен для здоровья человека, имеет хорошие показатели по теплоизоляции и звукоизоляции помещений. Используется, как для внутренней, так и для наружной теплоизоляции.
При монтаже базальтовой ваты следует использовать средства защиты (перчатки, респиратор и очки) для защиты слизистых оболочек от микрочастиц ваты. Наиболее известная в России марка базальтовой ваты – это материалы под маркой Rockwool. При эксплуатации плиты теплоизоляции не уплотняются и не слеживаются, а значит, прекрасные свойства низкой теплопроводности базальтовой ваты со временем остаются неизменными.
Пенофол, изолон (вспененный полиэтилен)
Фольгированный пенофол
Пенофол и изолон – это рулонные утеплители толщиной от 2 до 10 мм, состоящие из вспененного полиэтилена. Материал также выпускается со слоем фольги с одной стороны для создания отражающего эффекта. Утеплитель имеет толщину в несколько раз тоньше представленных ранее утеплителей, но при этом сохраняет и отражает до 97% тепловой энергии. Вспененный полиэтилен имеет длительный срок эксплуатации и экологически безопасен.
Изолон и фольгированный пенофол – легкий, тонкий и очень удобный в работе теплоизоляционный материал. Используют рулонный утеплитель для теплоизоляции влажных помещений, например, при утеплении балконов и лоджий в квартирах. Также применение данного утеплителя поможет вам сберечь полезную площадь в помещении, при утеплении внутри. Подробнее об этих материалах читайте в разделе «Органическая теплоизоляция».
Преимущества и недостатки различной теплоизоляции
При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.
Сравнение самых современных вариантов
Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.
Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.
Сравнение ватных материалов
Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.
У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.
Сыпучие и органические материалы
Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.
Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.
В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.
Способность тел и веществ передавать внутреннюю энергию, определяемую в макропроцессах термином «тепловая энергия» называется теплопроводностью. В технике и строительстве теплопроводность внешних конструкций – один из самых важных нормируемых критериев.
Формула теплопроводности (Закон Фурье), который рассмотрен ниже более подробно, связывает величину передаваемой тепловой энергии за единицу времени сквозь единицу площади через коэффициент теплопроводности, который и служит базовой характеристикой строительных конструкций по их теплоотдаче.
Теплопроводность некоторых теплоизоляционных материалов делает их непригодными для применения в строительстве дома, хотя их другие показатели вполне приемлемы. Теплопроводность смесей и композиционных материалов, применяемых для сооружения домов как правило, выше, чем у других веществ, так как это свойство учитывается при разработке их составов.
Численно определить коэффициент теплопроводности материала можно с помощью специальных приборов и методик, которые обязательны для соблюдения существующих в России архитектурных норм.
Как выбрать утеплитель для дома
Наш рейтинг содержит самые популярные виды утеплителей
Перед его рассмотрением затронем кратко основные параметры, на которые стоит обращать внимание при выборе:
- Теплопроводность. Показатель информирует о количестве тепла, способного перейти через разные материалы при одинаковых условиях. Чем значение меньше, тем лучше вещество защитит дом от промерзания и сэкономит средства на отоплении. Самыми лучшими значениями являются 0.031 Вт/(м*К), средними выступают 0.038-0.046 Вт/(м*К).
- Паропроницаемость. Подразумевает способность пропускать через себя частички влаги (дышать), не задерживая ее в помещении. В противном случае лишняя влага будет впитываться в строительные материалы и содействовать появлению плесени. Утеплители делятся на паропроницаемые и непроницаемые. Значение первых бывает от 0.1 до 0.7 мг/(м.ч.Па).
- Усадка. Со временем некоторые утеплители теряют объем или форму под действием собственного веса. Это требует более частых точек фиксации при монтаже (перегородки, прижимные планки) или использовать их только в горизонтальном положении (пол, потолочное перекрытие).
- Масса и плотность. От плотности зависят изоляционные характеристики. Значение варьирует от 11 до 220 кг/м3. Чем оно выше, тем лучше. Но с возрастанием плотности утеплителя увеличивается и его вес, что нужно учитывать при нагрузке на строительные конструкции.
- Водопоглощение (гигроскопичность). Если утеплитель подвергнется прямому воздействию воды (случайное разлитие на пол, протекание крыши), то он может либо выдержать это без вреда, либо деформироваться и испортиться. Одни материалы не гигроскопичны, а другие поглощают воду от 0.095 до 1.7% от массы за 24 часа.
- Диапазон рабочих температур. Если утеплитель закладывается в кровлю или непосредственно за котлом отопления, рядом с камином в стенах и т.д., то важную роль играет выдерживание повышенной температуры с сохранением свойств материала. Значение одних варьируют от -60 до +400 градусов, а других достигают -180. +1000 градусов.
- Горючесть. Утеплители для дома могут быть негорючими, слабогорючими и сильногорючими. Это влияет на защиту здания при случайном возгорании или намеренном поджоге.
- Толщина. Сечение пласта или рулонного утеплителя может быть от 10 до 200 мм. Это оказывает воздействие на то, сколько места потребуется отвести в конструкции под его размещение.
- Долговечность. Срок службы одних утеплителей достигает 20 лет, а других до 50.
- Простота укладки. Мягкие утеплители можно вырезать чуть с запасом и они плотно заполнят нишу в стене или полу. Твердые утеплители требуется кроить точно по размерам, чтобы не оставить «мостиков холода».
- Экологичность. Подразумевает способность выделять пары в жилое помещение в процессе эксплуатации. Чаще всего это связующие смолы (природного происхождения), поэтому большинство материалов экологически чисты. Но при монтаже некоторые виды могут создавать обильное пылевое облако, вредное для органов дыхания, и колоть руки, что потребует защиты перчатками.
- Химическая стойкость. Определяет можно ли поверх утеплителя стелить штукатурку и красить поверхность. Одни виды полностью устойчивы, другие теряют от 6 до 24% веса при контакте с щелочами или кислотной средой.
Минеральная вата: характеристики и свойства
Теплопроводность и особенности минеральной ваты
Теплопроводность — свойство предмета пропускать через себя тепло и отдавать его. У любого утеплителя есть своя теплопроводность, которая определяет качество материала, область ее использования.
Теплопроводность минеральной ваты зависит от марки и состава. В среднем показатели равны 0,034-0,05 Вт/м*К. Данные очень низкие, поэтому минеральная вата является прекрасным теплоизоляционным материалом.
Более рыхлая структура минваты имеет более низкий уровень теплопроводности, поэтому тепло лучше задерживается в воздушных «подушках».
У тяжелой минваты теплопроводность равна 0,48-0,55 Вт/м*К, а у легкой (с рыхлой структурой) теплопроводность составляет 0,035-0,047 Вт/м*К. Сравнить коэффициент теплопроводности минеральной ваты с различными видами утеплителей поможет таблица 1.
Название материала | Коэффициент теплопроводности, Вт/м*К |
Пенополиуретан | 0,025 |
Вспененный каучук | 0,03 |
Легкие пробковые листы | 0,035 |
Стекловолокно | 0,036 |
Пенопласт | 0,037 |
Пенополистирол | 0,04 |
Поролон | 0,04 |
Легкая минеральная вата | 0,039-0,047 |
Стекловата | 0,05 |
Хлопковая вата | 0,055 |
Чем ниже значение теплопроводности, тем лучше утеплитель. В сравнении с пенополистиролом и пенопластом, минеральная вата дает менее эффективные энергоемкие показатели. Но, если сравнить огнестойкость и вредность этих утеплителей, то минвата явно выигрывает.
Минеральная вата не горит и не содержит потенциально вредных веществ.
Одинаково сохраняют тепло:
- пенополистирол экструдированный (40 кг/м3) при толщине слоя 95 мм;
- минеральная вата (125 мг/м3) — 100 мм;
- ДСП (400 кг/м3) — 185 мм;
- дерево (500 кг/м3) — 205 мм.
Минеральная вата имеет низкий коэффициент теплопроводности, поэтому используется везде. Ее используют для утепления фасадов зданий, для внутреннего и наружного утепления.
Выбор минваты и расчет толщины утеплителя
Любое здание имеет свою норму теплосопротивления. Цифры зависят от климатической зоны и отличаются, исходя из региона.
У каждого утеплителя есть свой уровень теплопроводимости
Поэтому важно создать комфортные теплоизоляционные условия, которые сократят потребление энергии на отопление и охлаждение помещения
Если здание уже построено, расчеты нужно проводить, исходя из типа материала, его сечения, провести расчет теплопроводности, узнать цифры по теплоизоляции. Для домов, которые только строятся, больше возможностей для выбора стройматериалов, утеплителей и отделки.
Для расчетов толщины утеплителя нужно знать три цифры:
- региональные стандарты теплосопротивления зданий;
- коэффициент теплосопротивления стройматериала сооружения;
- коэффициент теплопроводности утеплителя.
Расчет проводите по формуле:
K = R/N,
где K – цифра теплосопротивления стены; R — толщина слоя утеплителя; N — коэффициент теплопроводности.
Эта формула поможет рассчитать теплосопротивление стены. И, на основе полученных данных, можно вычислить, какая нужна теплоизоляция по толщине. Полный расчет толщины утеплителя вы найдете в статье «Толщина утеплителя для стен».
Технические характеристики минеральной ваты как утеплителя
Каждый теплоизоляционный материал хорош по-своему. Минеральная вата в том числе.
Даже больше: она во многом лучше другим утеплителей, т.к. экологична, не вредит здоровью, проста в монтаже и долго сохраняет свои эксплуатационные свойства.
Для примера в таблице 2 сравним технические характеристики минеральной ваты и экструдированного пенополистирола.
Наименование характеристики | Минеральная вата | Экструдированный пенополистирол |
Прочность на сжатие при 10% линейной деформации, МПа | 37-190 (+/- 10%) | 28-53 (+/- 10%) |
Водопоглощение по объему за 24 часа | менее 0,4 | 0,2-0,4 |
Время самостоятельного горения, не более, c | не горючий материал | разгалаются ядовитые газы |
Пожарно-технические характеристики по СНиП 21-01-97 | НГ, Т2 | Г1, Д3, РП1 |
Диапазон рабочих температур, °С | -180 до +650°С При t ≥ 250°С связующее испаряется. Плавится при 1000°С | -50 до +75 °С При 200-250°С тепла разлагаются токсичные вещества |
Коэффициент паропроницаемости, мг/(м.ч. Па) | 0,31-0,032 | 0,007-0,012 |
Безопасность | + | – |
Тепловое сопротивление | 0,036-0,045 | 0,03-0,033 |
Звуконепроницаемость и ветрозащитное действие | + | + |
Влагостойкость | + | + |
Высокая стойкость к нагрузкам | – | + |
Сохранение стабильных размеров | – | + |
Долговечность | 50 лет (фактическая – 10-15 лет) | 50 лет (фактическая – более 20 лет) |
Удобство использования | + | + |
Трудновоспламеняемость | + | – |
Теплопроводность утеплителя – что это такое и на что влияет
Одним из важнейших параметров теплоизоляционного материала является коэффициент теплопроводности. Величина измеряется в Вт/м°C и определяет, насколько вещество способно удерживать тепло. При этом чем ниже его значение у конкретного вида утеплителя, тем теплее в помещении. Например, воздух обладает наименьшим значением данного параметра – всего 0,025 Вт/м°C, в то время, как у минваты он варьируется в рамках от 0,03 до 0,05 Вт/м°C.
Следующий сравнительный ряд демонстрирует среднее значение коэффициента теплопроводности (Вт/м°C) и величины толщины теплоизоляционного слоя, необходимого для удержания тепла в помещении при одинаковых условиях для разных видов минеральной ваты и других, традиционно используемых в строительстве материалов:
- Кирпич – 1,5 метра (0,52).
- Керамзит – 87 см (0,17).
- Стекловата – 190 мм (0,045).
- Базальтовая вата – 170 мм (0,039).
- Пенополистирол – 160 мм (0,037).
Сравнение необходимой толщины теплоизоляционного слоя из различных материаловИсточник infradom.ru
Значение коэффициента теплопроводности напрямую зависит от плотности и структуры материала минваты. В качестве основы могут использоваться самые разные вещества, которые в свою очередь в ходе производственного процесса могут образовывать самые разные пространственные образования волокон – горизонтальные, вертикально-слоистые, гофрировано-слоистые, объемные и проч. Такая особенность позволяет подбирать утеплитель, исходя из конкретных условий эксплуатации – для пола, кровли, внешней или внутренней отделки, коммуникаций и проч.
При этом коэффициент теплопроводности прямо пропорционален способности проводить тепло. То есть чем большими способностями пропускать через себя тепловую энергию обладает утеплитель, тем выше значение данного параметра, и тем, соответственно, больше должна быть его толщина.
Толщина теплоизолирующего слоя напрямую зависит от коэффициента теплопроводности утеплителяИсточник kronotech.ru
9 лучших утеплителей для дома
В частном доме, в отличие от многоэтажного, гораздо больше теплопотерь. Нагретый от отопления воздух отдает температуру стенам, окнам, крыше и полу. Чтобы не тратить еще больше средств на обогрев целесообразно выполнить утепление, для чего выпускаются различные материалы. Мы подготовили рейтинг лучших утеплителей для дома, составленный на основании отзывов мастеров и обычных покупателей, а также характеристик товара. Это поможет сориентироваться в имеющемся разнообразии и выбрать утеплитель для дома с оптимальными свойствами для стен, чердака или пола и по приемлемой цене.
Способы передачи тепловой энергии
Рассматривая вопрос о том, что такое теплопроводность материалов, следует упомянуть о возможных способах передачи тепла. Тепловая энергия может передаваться между различными телами с помощью следующих процессов:
- проводимость — этот процесс идет без переноса материи;
- конвекция — перенос тепла непосредственно связан и с движением самой материи;
- излучение — передача тепла осуществляется за счет электромагнитного излучения, то есть с помощью фотонов.
Чтобы тепло было передано с помощью процессов проводимости или конвекции, необходим непосредственный контакт между различными телами с тем отличием, что в процессе проводимости не существует макроскопического движения материи, а в процессе конвекции это движение присутствует. Отметим, что микроскопическое движение имеет место во всех процессах теплопередачи.
Для обычных температур в несколько десятков градусов Цельсия можно сказать, что на долю конвекции и проводимости приходится основная часть передаваемого тепла, а количество энергии, переданной в процессе излучения, является незначительным. Однако излучение начинает играть главную роль в процессе теплопередачи при температурах в несколько сотен и тысяч Кельвин, поскольку количество энергии Q, передаваемой этим способом, растет пропорционально 4-й степени абсолютной температуры, то есть ∼ T4. Например, наше солнце теряет большую часть энергии именно за счет излучения.
Теплопроводность минваты Rockwool
Коэффициент теплопроводности минеральной ваты Rockwool вас тоже может заинтересовать. Этот материал предлагается к продаже в нескольких наименованиях, каждое из которых представлено плитами или матами. Например, Rockmin с коэффициентом в пределах 0,039 Вт/м*К выпускается в виде плит и предназначается для звуко- и теплоизоляции чердаков, стен, кровель и вентилируемых покрытий.
Domrock в виде матов можно использовать для подвесных потолков, балочных перекрытий и легких каркасных стен. Описываемая характеристика в данном случае равна 0,045 Вт/м*К. Panelrock предлагается к продаже в виде плит и предназначается для звуко- и теплоизоляции наружных стен. Коэффициент теплопроводности у данного материала равен 0,036 Вт/м*К.
Если перед вами плита Monrock max, то вы можете ее приобрести для утепления разных типов плоских кровель. Коэффициент теплопроводности в случае с данным решением теплоизоляции равен 0,039 Вт/м*К. Вас может заинтересовать еще и коэффициент теплопроводности минеральной ваты Stroprock от производителя Rockwool. Он равен 0,041 Вт/м*К, а использовать материал можно для звуко- и теплоизоляции полов и перекрытий, первые из которых устраиваются на грунте, тогда как другие располагаются под бетонной стяжкой. В особый раздел следует вынести минеральную вату в виде матов Alfarock, которая используется для изоляции трубопроводов и труб. Коэффициент теплопроводности в данном случае равен 0,037 Вт/м*К.
Теплоизоляционные материалы пеностекло и эковата
Пеностекло производится посредством спекания стеклянного порошка и газообразователей. Пористость пеностекла высока — до 95 %.
Его основные достоинства:
- водостойкость, прочность и легкость обработки;
- морозостойкость и несгораемость;
- длительный срок эксплуатации;
- химическая нейтральность и биологическая стойкость.
- У пеностекла есть и недостатки:
- обладает высокой стоимостью и поэтому в основном применяется на промышленных объектах;
- не пропускает воздух.
Состав целлюлозной ваты (эковаты) неоднороден. Большую часть занимает древесное волокно — 80 %, меньшую — антипирен (борная кислота) — 12 %, антисептик (тетраборат натрия) — 7 %. Материал обладает мелкозернистой структурой. Поддается мокрому и сухому методу укладки. Для мокрого способа требуется специальное оборудование, так как вату выдувают. Сухой способ выглядит проще: материал засыпают и трамбуют до необходимой плотности.
Целлюлозная вата облает рядом достоинств:
- небольшая стоимость и безопасность производства и монтажа;
- однородная укладка и высокая теплоизоляция;
- изоляция зазоров и углублений и влагообмен без снижения теплоизолирующих свойств.
- К минусам материала можно отнести:
- горючесть и трудоемкость укладки;
- низкую прочность на сжатие (делает невозможным использование материала для «плавающих» полов).
Коэффициент теплопроводности строительных материалов – таблицы
Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.
Таблица коэффициентов теплоотдачи материалов. Часть 1
Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов
Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.
Таблица теплопроводности кирпича
Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.
Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)
Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.
Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.
Теплопроводность разных видов кирпичей
Таблица теплопроводности металлов
Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.
Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3
Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дереваПрочность разных пород древесины
Таблица проводимости тепла бетонов
Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.
Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов
Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.
Какой коэффициент теплопроводности у воздушной прослойки
В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу
Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины
Таблица проводимости тепла воздушных прослоек
Таблица проводимости тепла воздушных прослоек
Теплопроводность строительных материалов
Проектированием энергоэффективных домов должны заниматься специалисты, но в реальной жизни все может быть иначе. Случается так, что владельцы домов по ряду причин вынуждены самостоятельно подбирать материалы для строительства. Им также потребуется рассчитать теплотехнические параметры, на основании которых будут проводиться термоизоляция и утепление. Поэтому нужно иметь хотя бы минимальные представления о строительной теплотехнике и ее основных понятиях, таких как коэффициент теплопроводности, в каких единицах измеряется и как просчитывается. Знание этих «азов» поможет правильно утеплить свой дом и экономно его отапливать.