Типы пластинчатых теплообменников
Устройства для переноса тепла между нагретой и холодной средой подразделяются на следующие типы в зависимости от схемы передвижения теплоносителей:
1. Одноходовые пластинчатые аппараты, в которых среда перемещается постоянно по одной и той же траектории. При этом теплоноситель проходит по всей длине устройства. Еще в таких аппаратах среды всегда движутся в противоположных направлениях. Это является их основной отличительной чертой.
2. Многоходовые пластинчатые аппараты, рекомендованные для использования на тех объектах, где требуется достичь незначительной разницы температуры между греющей и нагреваемой жидкостью. У этих устройств патрубки находятся не только спереди на неподвижной части, но и с торца на нажимной плите. В устройствах данного типа потоки сред способны менять направления движения. Это может происходить в нескольких или исключительно в одном ходу. Многоходовые устройства передачи тепла оснащаются по одному входному и выходному отверстию.
3. Многоконтурные пластинчатые аппараты, имеющие в своей конструкции независимые контуры в количестве 2 штук. Они располагаются на одной стороне. Применяются такие устройства в тех случаях, когда нужно создать двухэтапные условия охлаждения или прогрева теплоносителя. Еще данные теплообменники позволяют эффективно выполнять регулирование тепловой мощности.
Однако на этом классификация пластинчатых теплообменников не заканчивается. Они еще подразделяются в зависимости от легкости доступа к устройствам, так как их поверхности необходимо не только постоянно чистить механическим способом, но и просто осматривать.
Производители создают три разновидности теплообменников пластинчатого типа:
1. Разборные устройства, имеющие минимально возможные размеры. Данные аппараты очень просто обслуживаются. Их гофрированные пластины и все каналы при необходимости имеется возможность без затруднения очистить. При этом конструкция таких теплообменников позволяет изменять число, и даже тип гофрированных пластин. В результате появляется возможность уменьшить или увеличить мощность отдельно взятого аппарата. Если же возникает утечка теплоносителя, то в этом случае исправить поломку тоже не составляет никакого труда, так как можно выполнить быструю замену уплотнительного элемента или пластины.
2. Полусварные устройства, к которым еще относятся полуразборные аппараты. Такие теплообменники состоят из нескольких модулей, изготовленных при помощи сварки. В состав каждого из них входит две гофрированные пластины. Для их сварки между собой используются лазерные аппараты. Из данных модулей собирается единый пакет. Для этого применяются торцевые пластины и болты, с помощью которых они стягиваются. Эти теплообменники используются в тех случаях, когда какой-нибудь теплоноситель имеет повышенное давление или температуру. Еще аппараты данного вида применяются для нагрева или охлаждения опасных сред.
3. Неразборные устройства, которыми являются теплообменники, изготовленные при помощи пайки. Они состоят из определенного количества гофрированных плит из нержавейки. Данные элементы соединяются между собой методом пайки. Этот процесс осуществляется в вакууме. При этом еще используется припой из никеля или меди. Такие теплообменники отличаются повышенной надежностью, небольшими габаритами и легкой установкой. Неразборные устройства способны самостоятельно очищать свои каналы, так как в них присутствует высокая турбулизация потока среды. Кроме того, они дают хороший экономический эффект. Используются данные аппараты в теплоснабжении, где с их помощью осуществляется нагрев воды.
Все вышеперечисленные теплообменники пластинчатого типа создаются из тонколистового металла. Минимальное количество пластин в одном аппарате обычно составляет 7 штук. Их максимальное число может быть любым, так как практически ничем не ограничивается. При этом самая большая температура нагревающей среды не превышает 150 градусов. В то же время максимальное давление составляет 9,8 бар. На количество теплоносителя, который проходит через теплообменник, влияют его габариты.
Конструкция и принцип работы
Кожухотрубный теплообменник разработан для простоты и надежности, с легким доступом к основным компонентам для обслуживания и ремонта. Принцип работы этого устройства также прост. Давайте подробнее рассмотрим структуру и принцип работы кожухотрубных теплообменников.
Конструкция теплообменника
В целом, кожухотрубный теплообменник состоит из следующих компонентов:
- распределительной камеры с входным и выходным патрубками;
- оболочки, имеющей впускной и выпускной патрубки;
- теплообменных труб;
- трубных решеток;
- задней (разворотной) камеры.
Основным преимуществом кожухотрубных теплообменников и главной причиной их популярности является простая и надежная конструкция. Кожухотрубный теплообменник состоит из распределительной камеры с теплообменными трубами, кожуха, который обычно имеет цилиндрическую форму, и специальных решеток.
На концах кожуха расположены крышки, которые полностью герметизируют корпус устройства. Кронштейны, входящие в комплект поставки, позволяют легко разместить теплообменник в горизонтальном положении. Кроме того, имеются кронштейны, позволяющие расположить агрегат по своему усмотрению.
Благодаря использованию оребренных трубок можно добиться увеличения интенсивности теплообмена. Если необходимо снизить интенсивность теплопередачи, трубки покрываются специальной теплоизоляцией. Таким образом, можно значительно увеличить аккумулирующую способность системы. В некоторых случаях применяются специальные конструктивные решения, при которых используются две трубы: труба меньшего диаметра вставляется в трубу большего диаметра.
Площадь теплообмена кожухотрубных теплообменников может составлять от 300 см2 до нескольких тысяч квадратных метров. В конденсаторе современной паровой турбины мощностью 300 МВт имеется более 20 000 трубок, а общая площадь теплообмена составляет около 15 000 м 2.
https://youtube.com/watch?v=E80Hec6WQ-4
Корпус теплообменника изготовлен из толстого стального листа толщиной не менее 4 мм. Сетки изготавливаются из материала того же качества, но с минимальной толщиной 20 мм. Основным элементом конструкции является ряд трубок. Материал, из которого изготовлены трубки, должен обладать высокой теплопроводностью, чтобы устройство работало эффективно. Положение пучка труб в корпусе определяется одной или несколькими решетками.
Принцип действия
Принцип работы кожухотрубного теплообменника довольно прост. Среды внутри кожухотрубного теплообменника разделены таким образом, чтобы они не смешивались друг с другом. Теплообменными элементами являются трубки, расположенные между двумя рабочими средами.
Один из теплоносителей движется внутри трубок, а другой находится под давлением между трубками. Кожухотрубные теплообменники могут использоваться во всех агрегатных состояниях, паровых, газовых и жидких или их комбинации.
Область применения аппаратов
Кожухотрубчатые аппараты применяются в качестве базисного оборудование для тепловых пунктов и инженерных сетей жилищно-коммунального хозяйства. Индивидуальные тепловые пункты (ИТП) имеют существенные преимущества перед централизованным тепловодоснабжением. Они более эффективно производят энергообеспечение объектов и обеспечение теплового режима зданий, чем теплоцентрали.
Теплообменное оборудование этого типа незаменимо в случаях, когда требуется обеспечить развязку по давлению и температуре теплоносителя во вторичном контуре ГВС от подачи сетевой воды. Это особенно актуально, если отопительная система подключается к теплоснабжающей сети по независимой схеме присоединения. Подобное случается, когда статическое давление, например, отопительных систем присоединенных зданий ввиду неровностей рельефа выше, чем в линии сети. Или наоборот, когда давление в сетевой «обратке» выше, чем в обслуживающей системе отопления.
Теплообменники этого типа применяются в нефтяной, газовой, химической промышленности. Их можно обнаружить в большой теплоэнергетике, где используются теплоносители с высокими параметрами. Разносторонняя сфера применения не ограничивается только этими отраслями. В качестве испарителей используются в ребойлерах, конденсаторах-холодильниках воздушного охлаждения, ректификационных колоннах. Могут также задействоваться для охлаждения сырьевых масс, компонентов или готовой продукции. Они широко применяются в технологических процессах молочного, пивного и других производствах пищевой промышленности.
Принцип работы на примере пластинчатого теплообменника
Этот теплообменник был выбран непросто. Он отличается довольно сложным принципом действия
, а потому идеально освещает некоторые общие особенности каждого вида агрегата. Каждая из пластин устройства монтируется к другой части с поворотом равным 180 градусов. В стандартном составе прибора можно встретить до четырёх подобных элементов. В комплекте они создают пакеты, которые отвечают за коллекторный контур. Сам же контур функционирует для создания движения теплоносителя. Конструкция теплообменника подразумевает наличие двух крайних контуров. Именно они не участвуют в процессе создания тепла механизмом.
На сегодняшний день производители техники предлагают пользователю получить два различных вида комплектации.
- Одноходовой. Теплоноситель разделяется и создаёт параллельные потоки. Практически сразу же они стекают в выводной порт.
- Многоходовой. Этот вариант подразумевает использование сложной схемы. Теплообменник начинает своё движение по одинаковому количеству задействованных каналов. Такой принцип работы подразумевает наличие дополнительных элементов
(пластин), которые заканчиваются заглушками в отводных портах. Эта особенность добавляет сложности в обслуживание подобных элементов.
Теплообменники имеют сложную структуру, хотя в большинстве случаев советы по их использованию сводятся к одинаковым фразам. Конечно же, конструкция каждого из них уникальна, а потому примером выступает кожухотрубный теплообменник.
Вся сложность заключена в единственном правиле – как и любой прибор на планете, устройство теплообменника требует ремонта. Каждая процедура ремонта влечёт ряд второстепенных проблем, который специалисты стараются решить подручными средствами и способами. В этом механизме, как и в большинстве видов, присутствуют разные трубки. Именно они и являются самой частой причиной поломок. При проведении даже диагностики исправности этих элементов конструкции, следует чётко понимать – малейшее неверное действие и прибор может снизить уровень работы.
Все чаще встречаются люди и организации, которые покупают несколько теплообменников сразу. Эта особенность позволяет сразу же заменить повреждённое устройство новым.
Некоторые нюансы могут возникнуть и при регулировке агрегатов. Если неправильно ввести значения, то площадь работы теплообменника резко снизится. В этом случае происходит нелинейное изменение рабочей площади.
Главным советом специалистов становится отказ от самостоятельных действий по созданию любого вида теплообменника. Процесс рассчитан исключительно на производственный монтаж
, а потому в домашних условиях его повторить невозможно.
Существует большое количество теплообменников. Одни из них дешевле, другие надёжнее, а третьи выдают лучший результат работы. Выбрать прибор сложно, но, возможно, зная основные их характеристики. Не стоит забывать и о правилах использования устройств, будь это кожухотрубные или пластинчатые изделия. Каждый вид работает исключительно с чёткими параметрами давления и условиями окружающей среды. Не стоит забывать и о советах специалистов, работающих с механизмами не первый год и знающих их особенности.
Смесительные теплообменные аппараты
В тепломассообменных аппаратах и установках контактного (смесительного) типа процессы тепло- и массообмена протекают при непосредственном соприкосновении двух и более теплоносителей.
Тепловая производительность контактных аппаратов определяется поверхностью соприкосновения теплоносителей. Поэтому в конструкции аппарата предусматривается разделение потока жидкости на мелкие капли, струи, пленки, а газового потока — на мелкие пузырьки. Передача теплоты в них происходит не только путем кондуктивной теплопередачи, но и путем обмена массой, причем при массопередаче возможен даже переход теплоты от холодного теплоносителя к горячему. Например, при испарении холодной воды в горячем газе теплота испарения переносится от жидкости к газу.
Контактные теплообменники нашли широкое применение для конденсации паров, охлаждения газов водой, нагревания воды газами, охлаждения воды воздухом, мокрой очистки газов и т. п.
По направлению потока массы контактные теплообменники могут быть разделены на две группы:
1) аппараты с конденсацией пара из газовой фазы. При этом происходят осушка и охлаждение газа и нагревание жидкости (конденсаторы, камеры кондиционеров, скрубберы);
2) аппараты с испарением жидкости в потоке газа. При этом увлажнение газа сопровождается его охлаждением и нагреванием жидкости или его нагреванием и охлаждением жидкости (градирни, камеры кондиционеров, скрубберы, распылительные сушилки).
По принципу диспергирования жидкости контактные аппараты могут быть насадочными, каскадными, барботажными, полыми с разбрызгивателями и струйными (рис. 8).
Каскадные (полочные) аппараты применяются преимущественно в качестве конденсаторов смещения (рис. 8, а). В полом вертикальном цилиндре установлены на определенном расстоянии одна от другой (350…550 мм) плоские перфорированные полки в виде сегментов. Охлаждающая жидкость подается в аппарат на верхнюю полку. Основная масса жидкости вытекает через отверстия в полке тонкими струями, меньшая ее часть переливается через борт на нижележащую полку.
Пар для конденсации подается через патрубок в нижней части конденсатора и движется в аппарате противотоком к охлаждающей жидкости. Жидкость вместе с конденсатом выводится через нижний патрубок аппарата и барометрическую трубу, а воздух отсасывается через верхний патрубок вакуум-насосом. Кроме сегментных полок в барометрических конденсаторах применяются кольцевые, конические и иной формы полки.
Барботажные аппараты (рис. 8, б) отличаются простотой конструкции, их применяют для нагревания воды паром, выпаривания агрессивных жидкостей и растворов, содержащих шламы, взвеси и кристаллизующиеся соли, горячими газами и продуктами сгорания топлива. Принцип работы барботажных подогревателей и испарителей состоит в том, что перегретый паp или горячие газы, поступающие в погруженные барботеры, диспергируются в пузырьки, которые при всплытии отдают теплоту жидкости и одновременно насыщаются водяным паром. чем больше пузырьков образуется в растворе, тем лучше структура барботажного слоя и тем больше межфазная поверхность. Структура барботажного слоя зависит от размеров газовых пузырьков и режима их движения.
Рис. 8. Виды смесительных теплообменников: а — каскадный теплообменник; б —барботажный; в — полый с разбрызгивателем; г — струйный; д — насадочная колонна: 1 — контактная камера; 2 — насадка; 3 — штуцер для входа газа; 4 — патрубок для подачи жидкости; 5 — штуцер для удаления газа; 6 — спускной штуцер для жидкости; 7 — распылительное устройство; 8 — распределительная тарелка; 9 — решетка
Полые контактные теплообменники (с разбрызгивателями) нашли применение при конденсации паров, охлаждении, сушке и увлажнении газов, упаривании и сушке растворов, нагревании воды и др. На рис. 8, в показана схема контактного водонагревательного теплообменника.
Струйные (эжекторные аппараты) применяются редко и только для конденсации паров. На рис. 8, г показана схема такого конденсатора.
Конструктивно смесительные теплообменные аппараты выполняются в виде колонн из материалов, устойчивых к воздействию обрабатываемых веществ, и рассчитываются на соответствующее рабочее давление. Насадочные и полые аппараты чаще всего изготовляются железобетонными или кирпичными. Каскадные, барботажные и струйные аппараты выполняются из металла. Высота колонн обычно в несколько раз превышает их поперечное сечение.
Каждому типу контактного устройства свойственны особенности, которые следует учитывать при выборе аппарата.
Кожухотрубный теплообменник
Теплообменник труба в трубе разборного типа.| Кожухотрубный теплообменник с. плавающей головкой. |
Кожухотрубный теплообменник может быть снабжен также трубным пучком U-образной формы.
Кожухотрубный теплообменник изготовлен из латунных трубок диаметром 25X2 5 мм1, заключенных в стальной корпус.
Способы крепления трубок в трубных решетках.| Схема теплообменника типа труба в трубе. |
Кожухотрубный теплообменник представляет собой цилиндрический стальной кожух с двумя трубными решетками, в которых развальцован пучок труб. Кожух закрыт с одного или обоих торцов крышками на фланцах.
Кожухотрубный теплообменник изготовлен из латунных трубок диаметром 25 X 2 5 мм, заключенных в стальной корпус.
Кожухотрубный теплообменник изготовлен из латунных трубок диаметром 25X2 5 мм, заключенных в стальной корпус.
Кожухотрубный теплообменник представляет собой пучок труб, заделанный на обоих концах в трубные доски. Тепло передается через стенки трубок от среды к среде, одна из которых циркулирует внутри трубок, а другая омывает их снаружи. Для повышения коэффициента теплоотдачи направление движения наружной среды несколько раз меняют с помощью перегородок; такой теплообменник носит название многоходового. Внутри трубок скорость движения среды и, следовательно, коэффициент теплоотдачи также могут быть увеличены с помощью специальных приспособлений, меняющих направление потока.
Кожухотрубный теплообменник — воздухоподогреватель 3 имеет 31 латунную трубу диаметром 25×2 5 мм.
Кожухотрубный теплообменник представляет собой цилиндрический сосуд, с обоих концов закрытый решетками, в которых ввальцованы или приварены трубы. Для создания движения среды в трубном пространстве решетки прикрываются сферическими крышками со штуцерами. Существующие конструкции кожухотрубных теплообменников показаны на фиг.
Теплообменник с сегментными перегородками. |
Кожухотрубный теплообменник ( рис. IX-51) состоит из пучка длинных труб, развальцованных в трубных решетках и заключенных в цилиндрический кожух. Для увеличения скорости газа в межтрубном пространстве и придания газовому потоку перпендикулярного направления к осям трубок обычно устанавливают сегментные перегородки. При полном заполнении кожуха трубками поток газа в межтрубном пространстве омывает трубки как в поперечном, так и в продольном направлениях. Коэффициент теплопередачи в этом случае обычно составляет 7 — 8 ккал / ( м2 — ч-град) при гидравлическом сопротивлении 100 — 150 мм вод. ст. При направлении газа, показанном стрелкой на рис. IX-51, б, гидравлическое сопротивление меньше, чем при перпендикулярном к нему ( продольном) направлении потока.
Зависимость коэффициента теплопередачи К двухрядного оросительного аппарата от плотности орошения Г ( трубы из графитопласта АТМ-1 с плавником. |
Кожухотрубный теплообменник поверхностью 31 м2 был испытан при работе в режиме пленочного охлаждения. При объемном расходе горячей воды в трубном пространстве 7 м3 / ч и охлаждающей воды в межтрубном пространстве 17 м3 / ч был получен коэффициент теплопередачи К 670 вт / м2 С, а при объемном расходе охлаждающей воды 5 м3 / ч и горячей воды 7 м3 / ч был получен коэффициент К 500 вт / м2 С.
Виды пластинчатых теплообменных аппаратов и их применение
По способу соединения теплообменных пластин теплообменник может быть:
Конструкция и принцип работы разборных пластинчатых ТО были описаны выше. Рассмотрим более подробно особенности конструкции и область применения паяных, полусварных и сварных теплообменников.
Паяный пластинчатый теплообменник
Агрегат широко используется для:
- нагрева и охлаждения рабочих сред;
- испарения;
- конденсации;
- утилизации и рекуперации тепловой энергии.
Теплообменные пластины ППТО изготавливаются из нержавеющей стали. Сборка пакета осуществляется аналогично с разборными теплообменниками, после чего производится пайка медным или никелевым припоем, в зависимости от агрессивности рабочей среды: для более агрессивных сред используется никель.
К наиболее существенным преимуществам паяных ПТО можно отнести:
- высокую надежность;
- возможность работы в широком температурном диапазоне;
- легкость и небольшие габариты;
- надежность конструкции;
- простоту монтажа и технического обслуживания;
- доступную стоимость.
Особенно хорошо паяные ПТО зарекомендовали себя в холодильных и замкнутых отопительных системах.
Полусварные пластинчатые теплообменники
Главной конструктивной особенностью полусварных теплообменников является попарное сваривание штампованных пластин, в результате чего формируется отдельный герметичный модуль. Сборка ПСПТО осуществляется также, как и разборного теплообменника, различие состоит в том, что вместо отдельных пластин используются готовые сварные модули.
Между первичными и вторичными модулями устанавливаются прокладки из термостойкой резины. Отсутствие внутренних прокладок позволяет существенно увеличить рабочее давление в системе и температуру рабочей среды.
Благодаря высоким эксплуатационным характеристикам ПСПТО получили широкое распространение следующих областях:
- в системах вентиляции и кондиционирования;
- в химическом и фармацевтическом производстве;
- в пищевой промышленности;
- в системах рекуперации;
- в отопительных системах;
- в системах централизованной подачи горячей воды.
Среди наиболее значимых преимуществ данной конструкции можно выделить:
- широкий диапазон рабочих температур;
- отсутствие герметизирующих прокладок;
- инертность к агрессивным рабочим средам;
- простоту монтажа и технического обслуживания.
В отличии от сборных ПТО, полусварные агрегаты практически полностью исключают возможность неправильной сборки.
Сварные пластинчатые теплообменники
Отсутствие уплотнений является главной особенностью конструкции сварных теплообменных аппаратов. Гофрированные пластины сварены в один блок, в котором рабочая среда протекает по внутренним каналам, а нагреваемая – по внешним.
Применяются СПТО при работе с агрессивными средами при повышенных температурах и высоком давлении рабочих сред.
Конструктивные особенности сварных теплообменников обеспечивают следующие преимущества:
- компактность;
- высокий коэффициент теплопередачи;
- незначительные теплопотери;
- простоту технического обслуживания.
Отсутствие уплотнений в сварных ПТО обеспечивает полную герметичность рабочих каналов, что позволяет работать в экстремальных условиях.
История появления и внедрения
Изобрели кожухотрубные (или ) теплообменники в начале прошлого века, дабы активно использовать при работе ТЭС, где большое количество нагретой воды перегонялось при повышенном давлении. В дальнейшем изобретение стали использовать при создании испарителей и нагревающих конструкций. С годами устройство кожухотрубного теплообменника совершенствовалось, конструкция стала менее громоздкой, ее теперь разрабатывают так, чтобы было доступно чистить отдельные элементы. Чаще стали применять подобные системы в нефтеперегонной промышленности и производстве бытовой химии, поскольку продукты этих отраслей несут в себе массу примесей. Их осадок как раз и требует периодической чистки внутренних стенок теплообменника.
Как мы видим на представленной схеме, кожухотрубный теплообменник состоит из пучка трубок, которые расположены в своей камере и закреплены на доске либо решетке. Кожух – собственно, название всей камеры, сваренной из листа не менее 4 мм (или больше, в зависимости от свойств рабочей среды), в которой находятся мелкие трубки и доска. В качестве материала для доски используют обыкновенно листовую сталь. Между собой трубки соединяются патрубками, имеются также вход и выход в камеру, отвод для конденсата, перегородки.
В зависимости от количества труб и их диаметра, колеблется мощность теплообменника. Так, если передающая тепло поверхность составляет около 9 000 кв. м., мощность теплообменника составит 150 МВт, это пример работы паровой турбины.
Устройство кожухотрубного теплообменника подразумевает соединение сварных труб с доской и крышками, которое может быть разным, равно как и изгиб кожуха (в виде буквы U или W). Ниже представлены типы устройств, наиболее часто встречающиеся на практике.
Еще одной особенностью устройства является расстояние между трубами, которое в 2-3 раза должно превышать их сечение. Благодаря чему коэффициент отдачи тепла является небольшим, и это способствует эффективности всего теплообменника.
Исходя из названия, теплообменник – это устройство, создаваемое с целью передать вырабатываемое тепло на нагреваемый предмет. Теплоносителем в данном случае выступает конструкция, описанная выше. Работа кожухотрубного теплообменника заключается в том, что холодная и горячая рабочие среды двигаются по разным кожухам, и теплообмен происходит в пространстве между ними.
Рабочей средой внутри труб является жидкость, в то время как горячий пар проходит в расстоянии между труб, образуя конденсат. Поскольку стенки труб нагреваются больше, чем доска, к которой они прикреплены, эту разность необходимо компенсировать, иначе бы устройство имело значительные потери тепла. Для этого применяются так называемые компенсаторы трех типов: линзы, сальники или сильфоны.
Также, при работе с жидкостью под высоким давлением используют однокамерные теплообменники. Они имеют изгиб U, W-образного типа, необходимое чтобы избежать высоких напряжений в стали, вызываемых тепловым удлинением. Их производство достаточно дорогое, трубы в случае ремонта сложно заменить. Поэтому такие теплообменники пользуются меньшим спросом на рынке.
В зависимости от способа крепления труб к доске или решетке, выделяют:
- Приваренные трубы;
- Закрепленные в развальцованных нишах;
- Соединенные болтами с фланцем;
- Запаянные;
- Имеющие сальники в конструкции крепежа.
По типу конструкции кожухотрубные теплообменники бывают (см. рисунок-схему выше):
- Жесткие (буквы на рис. а, к), нежесткие (г, д, е, з, и) и наполовину жесткие (буквы на рис. б, в и ж);
- По количеству ходов – одно- или многоходовые;
- По направлению тока технической жидкости – прямого, поперечного или против направленного тока;
- По расположению доски горизонтальные, вертикальные и расположенные в наклонной плоскости.
Теплообменник двигателя
При существенном понижении температур дизельное топливо становится густым, что значительно усложняет не только запуск самого двигателя, но работу двигателя в целом. Существуют ситуации прямо противоположные – слишком активная деятельность двигателя при отсутствии охлаждения или отвода тепла. В таких ситуациях возможен значительный перегрев двигателя, что также негативно сказывается на агрегате. Естественно, что риск неблагоприятных последствий возрастает в десятки раз при систематическом и длительном перегреве. Большинство таких случаев заканчивается полным ремонтом, начиная с этапа замены гильз и поршней и заканчивая заменой других деталей.
На современных легковых автомобилях чаще всего применяются так называемые жидкостные системы охлаждения. Это закрытые системы охлаждения, имеющие низкий уровень шума, но обеспечивающие равномерное охлаждение. В целом же за поддержание оптимальной температуры двигателя отвечают следующие детали системы охлаждения:
- радиатор с жидкостью, которая непосредственно охлаждает;
- масляный радиатор;
- теплообменник;
- водяная помпа (действует по принципу забора тепла от деталей);
- термостат (регулирует направление движения жидкости, которая производит охлаждение) и др.
Теплообменник двигателя выполняет прямо противоположную функцию относительно радиатора. Если радиатор нужен для осуществления процесса уже нагретой жидкости, то теплообменник способствует нагреву того воздуха, который проходит через него. Данный процесс необходим для предотвращения процесса, в результате которого моторное масло начинает вспениваться (образуются пузырьки воздуха при нагревании масла). Это является основной проблемой при нагреве моторного масла, так как в итоге ведет к поломке мотора.
Во избежание такого рода неприятных ситуаций, ведущих к поломке, масло также нуждается в постоянном охлаждении. Если подвергнуть тщательному анализу весь процесс изменения температуры масла на протяжении всего цикла, то заметим, что после забора масло поступает в теплообменник именно для охлаждения и только затем вновь отправляется для того, чтобы произвести смазку и охлаждение дизельного двигателя.