Принцип работы
При сгорании топлива выделяется тепло, нагревающее воздух в конвекционных трубах. Тот устремляется вверх, попадает в короб и далее распределяется по помещениям. Одновременно конвективный поток втягивает в трубу через нижнее отверстие холодный воздух. Он нагревается, под действием архимедовой силы начинает движение вверх, и цикл повторяется.
По способу сжигания топлива воздухогрейные котлы делятся на следующие виды:
- Прямого горения.
- Пиролизные.
- С принудительной подачей воздуха.
- Верхнего горения.
- Пеллетные.
- Рассчитанные на режим тления.
Первый вариант — это классическая «буржуйка» с небольшими усовершенствованиями.
Принцип работы котла на твердом топливе.
Ее преимуществами являются:
- простая конструкция;
- возможность энергонезависимого исполнения.
Прибор считается малопрактичным из-за существенных недостатков:
- низкого КПД;
- необходимости часто подкладывать дрова.
Топка пиролизного котла состоит из 2 частей. В одной дрова или уголь в условиях нагрева и недостатка воздуха разлагаются на горючие газы, в другой эта смесь сжигается.
Преимущества:
- длительная работа на 1 закладке топлива;
- высокий КПД;
- минимальное количество золы;
- чистый выхлоп.
Недостатки:
- невозможность энергонезависимого исполнения (требуется строго выверенная подача воздуха, управляемая электронным контроллером);
- использование только сухого топлива.
Необходимо отметить и высокую стоимость таких приборов.
Котлы с принудительной подачей воздуха конструктивно схожи с отопителями прямого горения. Разница заключается в том, что кислород нагнетается в топку вентилятором, поэтому в нужный момент доступ ему может быть перекрыт. Таким образом, котел работает в режиме «старт-стоп»: благодаря этой схеме дрова требуется подкладывать реже.
Воздухогрейные твердотопливные агрегаты эффективны в эксплуатации.
Преимущества:
- простая конструкция;
- низкая инерционность.
Недостаток — зависимость от электричества.
У котлов верхнего горения топка ориентирована вертикально. Спереди дверца отсутствует. Топливо загружают сверху, с этой же стороны его поджигают. Воздух подается по телескопическому трубопроводу в зону горения.
Преимущества схемы:
- длительная работа на 1 закладке топлива;
- возможность энергонезависимого исполнения (для дровяного варианта).
Недостатки:
- Зола прилипает к стенкам.
- Новая порция загружается только после полного сгорания предыдущей.
Необходимо отметить и большие размеры.
Данный теплогенератор, а также пиролизный и с принудительной подачей воздуха, благодаря способности долго работать на 1 закладке топлива, называют «котлами длительного горения». Периодичность загрузки у некоторых составляет 3 суток.
Котел на пеллетах представляет собой разновидность твердотопливного отопительного оборудования.
Пеллетные котлы используют в качестве топлива однородные по размеру гранулы, изготовленные путем прессования опилок, жмыха и прочих органических отходов. Материал подается в топку шнековым питателем из бункера.
Преимущества:
- относительно редкое обслуживание;
- регулировка мощности в широких пределах (зависит от скорости подачи пеллет);
- низкая инерционность.
Недостатки:
- энергозависимость;
- отсутствие возможности изготавливать топливо в домашних условиях.
К котлам, рассчитанным на режим тления, относятся приборы марки «Профессор Бутаков», «Булерьян» и т. п.
Отопители сочетают в себе 3 достоинства:
- способность долго работать на 1 закладке топлива;
- энергонезависимость;
- простую конструкцию.
Отопительная конструкция может работать в режиме тления.
Это вариант для полевых условий, когда отсутствует электроснабжение и ввиду занятости нет возможности часто подкладывать дрова. При помощи заслонки ограничивается поступление воздуха к топливу, и оно вместо горения тлеет, медленно отдавая тепло.
В некоторых моделях, например, марки «Булерьян», дымоход начинается т. н. «экономайзером». Его задача состоит в блокировании тяги при воспламенении топлива (образуется газовая пробка). Этим обеспечивается стабильность режима тления.
Сферы применения: дачный домик, гараж, временные бытовки и производственные помещения в местности с неразвитой инфраструктурой.
Обогревать таким теплогенератором благоустроенное жилище нецелесообразно из-за существенных недостатков:
- низкого КПД;
- большого количества дыма;
- обильного образования конденсата, представляющего собой едкий кислотный коктейль.
Принцип работы
Под кавитацией принято понимать процесс, при котором происходит образование пузырьков в жидкости. В смешанной фазе происходит действие рабочего колеса. Для смешанной фазы потока насосное оборудование не предназначено
При использовании кавитационного нагревателя в качестве основного предназначения очень важно создание смешанного потока фаз, которые выступают как часть перемешивания жидкости, следствием чего является возникновение термической конверсии. У кавитационных теплогенераторов коммерческого типа посредством механической энергии в действие приводятся нагреватели входной энергии. В качестве таковых выступают:
В качестве таковых выступают:
- двигатель;
- блок управления.
При работе этих элементов источник возвращается в жидкость. Именно благодаря ей и происходит образование выходной энергии. Благодаря такому сохранению происходит превращение механической энергии в тепловую с небольшой потерей. Поэтому при выполнении перерасчетов необходимо учитывать погрешность преобразования.
Несколько другой принцип заложен в основу работы суперкавитационного теплогенератора энергии. Такое оборудование используется на промышленных предприятиях. Во время их работы на жидкость передается возникающая в определенном устройстве тепловая энергия выхода. Мощность тепловой энергии значительно выше, чем механической, которая используется для приведения в действие нагревателя. Такие приборы отличаются более высокой энергетической производительностью в сравнении с возвратными механизмами. Одним из достоинств является то, что частая проверка такого оборудования не требуется.
Виды кавитационных теплогенераторов
В настоящий момент существует несколько типов таких генераторов. Самым распространенным является роторно-гидродинамический механизм Григгса. Работа центробежного насоса положена в основу принципа действия этого устройства. Если говорить об его основных элементах, то таковыми являются:
- патрубки;
- статор;
- корпус для рабочей камеры.
Существует большое количество модификаций такого устройства. Если говорить о самой простой конструкции, то таковой является приводно-дисковой водяной насос с ротационным действием. Своим видом он представляет дисковую поверхность, в которой имеется большое количество отверстий глухого типа, то есть, не имеющей выхода. Эти элементы конструкции специалисты называют ячейками Григгса. Размеры их часто зависят от:
- мощности самого ротора;
- конструкции теплогенератора;
- частоты вращения привода.
Определенный зазор существует между ротором и статором. Он необходим для нагрева воды. Посредством быстрого движения жидкости по поверхности диска осуществляется этот процесс. Это обеспечивает повышение температуры. Скорость, с которой движется ротор, составляет 3000 оборотов в минуту. Этого вполне достаточно для того, чтобы поднять температуру до 90 градусов.
Имеется и еще один вид кавитационного теплогенератора. Он называется статическим. Главным отличием от роторного является то, что он не имеет вращающихся частей. Для осуществления процесса кавитации ему необходимы сопла. Эти детали подключены к рабочей камере.
Для того чтобы это устройство начало работать, необходимо подключить к нему обычный насос. Благодаря ему при работе устройства происходит нагнетание в рабочую камеру определенного давления, что позволяет добиться высокой скорости движения воды. Вследствие этогопроисходит повышение температуры. Значительная скорость жидкости на выходе сопла обеспечивается за счет разности диаметров в поступательном и выходном патрубках. В этом устройстве имеется один недостаток. В плане эффективности он уступает зарубежному генератору. К тому же он обладает большими габаритами и имеет значительную массу.
Плюсы и минусы
В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.
К плюсам таких устройств следует отнести:
- Куда более эффективный механизм получения тепловой энергии;
- Расходует значительно меньше ресурсов, чем топливные генераторы;
- Может применяться для обогрева как маломощных, так и крупных потребителей;
- Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.
К недостаткам кавитационных теплогенераторов следует отнести:
Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении; Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях; Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).\
Список источников
- www.asutpp.ru
- vodakanazer.ru
- sovet-ingenera.com
- otoplenie-doma.org
- kotel.guru
- kaminguru.com
- econet.ru
- tcgroupenergia.ru
- yakutiafuture.ru
- tut-proremont.ru
Виды генераторов
Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды:
- Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
- Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
- Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
- Кавитационный теплогенератор – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.
Последний вид теплогенераторов за последние 200 лет собрал вокруг себя массу споров и противоречий. Появились, как сторонники теории кавитации, так и ее противники. Но, так или иначе, кавитационные теплогенераторы получили широкое распространение в обогреве жилья.
Самым популярным теплогенератором, работающим по этому принципу, является генератор Потапова.
Роторный вихревой теплогенератор
Схема вихревого теплогенератора.
Данная гидродинамическая конструкция являет собой несколько измененный центробежный насос. Говоря другими словами, имеется корпус насоса (в данном случае он является статором) с выходным и входным патрубками и рабочей камерой. Внутри корпуса находится ротор, который выполняет роль рабочего колеса. Основное отличие от обыкновенного насоса заключается в роторе. Известно большое количество конструктивных роторных исполнений вихревых теплонегераторов, все описывать не имеет смысла. Наиболее простой из них является диском. На его цилиндрической поверхности просверлено немалое количество глухих отверстий определенного диаметра и глубины. Данные отверстия называются ячейками Григгса (американский изобретатель, который первым испытал данную конструкцию). Размеры и количество этих ячеек должны определяться исходя из размеров роторного диска и частоты вращения электрического двигателя, который приводит его во вращение.
Статор (корпус теплогенератора) в большинстве случаев выполняется в виде полого цилиндра, то есть трубы, которая заглушена фланцами с обеих сторон. Зазор между внутренней стеной статора и ротором при этом весьма мал и составляет приблизительно 1-1,5 мм.
В зазоре между статором и ротором будет происходить нагрев воды. Ему способствует трение жидкости о поверхности ротора и статора, при быстро вращении первого. Большое значение для нагрева воды имеют и кавитационные процессы, завихрения воды в роторных ячейках. Скорость вращения ротора в большинстве случаев составляет 3000 об/мин, в случае если его диаметр равен 300 мм. С уменьшением диаметра ротора частота вращения должна увеличиваться.
Схема принципа работы воздушного отопления теплогенератора.
При всей простоте данная конструкция нуждается в большой точности изготовления. Помимо того, понадобится балансировка ротора. Необходимо будет решить и вопрос уплотнения вала ротора. Следует знать, что уплотнительные элементы нуждаются в регулярной замене.
Из того, что было сказано выше, следует, что ресурс данных установок не очень большой. Стоит заметить, что работа роторных теплогенераторов создает повышенный шум. В сравнении с конструкциями статического типа они обладают на 20-30% большей производительностью. Устройства роторного типа могут даже вырабатывать пар.
Принцип действия
Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий
Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.
Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.
На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору
Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.
Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.
Принцип действия кавитационного преобразователя
Иллюстрация | Описание процесса |
|
Устройство и особенности функционирования
Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления
Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».
«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.
Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта
В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:
- Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
- Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
- Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.
Самодельные теплогенераторы
Тем не менее, как демонстрация интересного физического процесса, сделанный своими руками теплогенератор имеет право на жизнь.
Наиболее проста в изготовлении «вихревая трубка», или статический теплогенератор.
Конструктивно наше сопло Лаваля будет выглядеть как металлический патрубок с трубной резьбой на концах, позволяющей при помощи резьбовых муфт соединить его с трубопроводом. Для изготовления патрубка понадобится токарный станок.
- Сама форма сопла, точнее, его выходной части, может отличаться по исполнению. Вариант «а» наиболее прост в изготовлении, а его характеристики можно варьировать изменением угла выходного конуса в пределах 12-30 градусов. Однако такой тип сопла обеспечивает минимальное сопротивление потоку жидкости, а, следовательно, и наименьшую кавитацию в потоке.
- Вариант «б» более сложен в изготовлении, но за счет максимального перепада давления на выходе сопла создаст и наибольшую турбулентность потока. Условия для возникновения кавитации в этом случае являются оптимальными.
- Вариант «в» — компромиссный по сложности изготовления и эффективности, поэтому стоит остановиться на нем.
Изготовив сопло, можно собрать экспериментальный контур, состоящий из электрического насоса, соединительных патрубков, непосредственно сопла и термометра, который мы используем для определения эффективности устройства. Для уменьшения влияния рассеивания тепла в окружающую среду патрубки лучше всего сделать короткими и замотать их теплоизоляционным материалом. Заполнив контур устройства водой и запомнив ее количество, включим насос ровно на час, чтобы по электросчетчику определить количество израсходованной электроэнергии.
Тепловую мощность самодельного теплогенератора можно определить по следующей формуле, известной по школьному курсу физики:
E=cm(T2-T1)
Где с — это удельная теплоемкость воды (4200 Дж/(кг*К)), m — ее масса, T2 — температура воды в конце работы насоса, Т1 — температура в начале. Полученную энергию, измеренную в джоулях. Сравнить ее с израсходованной электроэнергией можно, учитывая соотношение в 1000 Дж на 0.000277 киловатт-часов энергии. Иначе говоря, при стопроцентном КПД устройство, израсходовавшее 1 киловатт-час энергии, не сможет создать тепловой энергии больше 3600 килоджоулей.
ПРИМЕР: Наше устройство нагрело за час 1 литр воды с 10 до 60 градусов. Получаем тепловую энергию в 210 килоджоулей.
Посмотрите, что сообщают о таких устройствах производители
Популярные модели
Отечественными производителями предлагаются модели кавитаторов гидроударного и электрогидроударного типа. Линейка включает в себя агрегаты небольшой мощности.
ВТГ-2.2
Оборудование представляет собой прибор малой мощности, который подходит для отопления сооружения объемом до 90 м³. Стоимость продукции варьируется в пределах 32-35 т. р.
ВГТ-30
Агрегат средней мощности, разработан для обогрева зданий объемом до 1400 м³. Требуется комплектация в виде шкафа управления. Цена изделия – около 150 000 р.
ИТПО
Продукция ижевских производителей, как заявляют поставщики кавитаторов, располагает КПД до 150%
Несмотря на высокий диапазон стоимости, модель привлекает внимание широкой аудитории потребителей
Инструмент, необходимый для сборки агрегата
С нуля собрать такой агрегат самостоятельно невозможно, так как для его изготовления потребуется задействовать технологическое оборудование, которого у домашнего мастера просто нет. Поэтому своими руками обычно собирают лишь агрегат, в некотором роде повторяющий . Его называют прибором Потапова.
Однако даже для сборки этого устройства необходимо оборудование:
- Дрель и набор сверл для нее;
- Сварочный аппарат;
- Машинка для шлифовки;
- Ключи;
- Крепеж;
- Грунтовка и малярная кисть.
Кроме этого потребуется приобретение двигателя, работающего от сети в 220 В и неподвижная основа для установки на ней самого прибора.
Этапы изготовления генератора
Сборка устройства начинается с подключения к насосу, желательного напорного типа, патрубка смешивания. Его присоединяют, используя специальный фланец. В центре донышка патрубка выполняется отверстие, по которому будет выводиться горячая вода. Чтобы контролировать ее поток используется тормозящее приспособление. Оно находится перед донышком.
Но так как в системе циркулирует и холодная вода, то ее течение должно также регулироваться. Для этого используют дисковый выпрямитель. При остывании жидкости она направляется к горячему концу, где в специальном смесителе происходит ее смешивание с нагретым теплоносителем.
Далее переходят к сборке конструкции вихревого теплогенератора своими руками. Для этого использую шлифовальную машинку нарезают угольники из которых собирается основная конструкция. Как это сделать видно на расположенном ниже чертеже.
Собирать конструкцию можно двумя способами:
- Используя болты и гайки;
- При помощи сварочного аппарата.
В первом случае приготовьтесь к тому, что придется выполнить отверстия под крепеж. Для этого нужна дрель. В процессе сборки необходимо учитывать все размеры – это поможет получить агрегат с заданными параметрами.
Самый первый этап – это создание станины, на которой устанавливается двигатель. Ее собирают из железных уголков. Размеры конструкции зависят от размеров двигателя. Они могут отличаться и подбираются под конкретное устройство.
Чтобы закрепить двигатель на собранной станине потребуется еще один угольник. Он будет выполнять роль поперечины в конструкции
При выборе двигателя специалисты рекомендуют обращать внимание на его мощность. От этого параметра зависит количество нагреваемого теплоносителя. Смотрим видео, этапы сборки теплогенератора:
Смотрим видео, этапы сборки теплогенератора:
Последний этап сборки – это покраска рамы и подготовка отверстий для установки агрегата. Но прежде, чем приступать к монтажу насоса следует рассчитать его мощность. Иначе двигатель может не справиться с запуском установки.
После того, как все комплектующие подготовлены насос присоединяется к отверстию из которого поступает под давлением вода и агрегат готов к работе. Теперь, используя второй патрубок его подсоединяют к отопительной системе.
Подключение прибора к системе происходит следующим образом. Сначала его подсоединяют к отверстию, по которому поступает вода. Она при этом находится под давлением. Второй патрубок используется для непосредственного подсоединения к системе отопления. Чтобы изменять температуру теплоносителя за патрубком находится запирающее устройство. При его перекрытии температура в системе постепенно увеличивается.
Могут использоваться и дополнительные узлы. Однако стоимость такого оборудования достаточно высокая.
Смотрим видео, конструкция после изготовления:
Корпус будущего генератора можно выполнить сварным. А детали к нему по вашим чертежам выточит любой токарь. Обычно он имеет форму цилиндра, закрытого с обеих сторон. По сторонам корпуса выполняются сквозные отверстия. Они нужны для подсоединения агрегата к системе отопления. Внутри корпуса помещают жиклер.
Наружную крышку генератора обычно изготавливают из стали. Затем в ней выполняются отверстия под болты и центральное, к которому впоследствии приваривается штуцер для подачи жидкости.
На первый взгляд кажется, что ничего сложного в сборке теплогенератора своими руками на дровах нет. Но на самом деле эта задача не такая уже и легкая. Конечно, если не спешить и хорошо изучить вопрос, то справиться можно. Но при этом очень важна точность размеров выточенных деталей. И особого внимания требует изготовление ротора. Ведь в случае, если он будет выточен неправильно агрегат станет работать с высоким уровнем вибрации, что негативно скажется на всех деталях. Но большего всего в такой ситуации страдают подшипники. Они будут очень быстро разбиваться.
Только правильно собранный теплогенератор будет работать эффективно. При этом его КПД может достигать 93%. Поэтому специалисты советуют.
Особенности конструкции агрегата
Внешне устройство электро-дровяного котла практически не отличается от традиционного твердотопливного теплогенератора. Только в одном месте, где под обшивкой и теплоизоляцией расположена водяная рубашка агрегата, имеется специальное отверстие, из которого видны контакты для подключения электрических проводов. В действительности комбинированная установка имеет топку для загрузки твердых видов топлива, зольную камеру с заслонкой, через которую проходит воздух для горения, и колосниковую решетку.
Бытовые комбинированные котлы на дровах и электричестве могут быть оборудованы как водотрубным теплообменником, так и дымогарными трубами. Некоторые модели снабжаются и варочными панелями, находящимися в верхней части камеры сгорания. То есть, это полноценные твердотопливные установки с КПД 75—85%. Но в них есть одна особенность конструкции: одна из стенок топки, являющаяся внутренней обшивкой водяной рубашки, имеет сложный профиль, выполняемый с помощью холодной штамповки. Благодаря этому профилю в пространство между внутренней и наружной обшивкой рубашки помещается один или несколько ТЭНов. Это частный случай схемы, по которой изготавливаются электро-дровяные котлы отопления, ТЭНы могут встраиваться в котловой бак и другими способами.
Как самому сделать генератор
Первым трубчатый агрегат был разработанный Потаповым. Но патент на него он не получил, т.к. до сих пор обоснование работы идеального генератора считается неполными «идеальным», на практике также пытались воссоздать прибор Шаубергер, Лазарев. На данный момент принято работать по чертежам Ларионова, Федоскина, Петракова, Николая Жука.
Вихревой кавитационных генератор Потапова
Перед началом работы нужно выбрать вакуумный или бесконтактный насос (подойдет даже для скважин) по своим параметрам. Для этого необходимо учесть следующие факторы:
- Мощность насоса (производится отдельный расчет);
- Потребная тепловая энергия;
- Величина напора;
- Тип насоса (повышающий или понижающий).
Несмотря на огромное разнообразие форм и видов кавитаторов, практически все промышленные и бытовые устройства выполнены в виде сопла, такая форма является наиболее простой и практичной. Кроме того, её легко модернизировать, благодаря чему значительно повышается мощность генератора
Перед началом работы обратите свое внимание на сечение отверстия между конфузором и диффузором. Его необходимо сделать не слишком узким, но и не широким, приблизительно от 8 до 15 см. В первом случае Вы повысите давление в рабочей камере, но мощность будет не высокой, т.к
объем нагретой воды будет относительно мал, по отношению к холодной. Помимо этих проблем, небольшая разность сечений способствует насыщению кислородом входящей воды из рабочего патрубка, этот показатель влияет на уровень шума насоса и возникновение кавитационных явлений в самом устройстве, что в принципе, негативно сказывается на его работе
В первом случае Вы повысите давление в рабочей камере, но мощность будет не высокой, т.к. объем нагретой воды будет относительно мал, по отношению к холодной. Помимо этих проблем, небольшая разность сечений способствует насыщению кислородом входящей воды из рабочего патрубка, этот показатель влияет на уровень шума насоса и возникновение кавитационных явлений в самом устройстве, что в принципе, негативно сказывается на его работе.
Кавитационный теплогенератор
Кавитационные теплогенераторы систем отопления обязательно имеют камеры расширения. У них может быть различный профиль в зависимости от требований и необходимой мощности. В зависимости от этого показателя может меняться конструкция генератора.