Теория вентиляционного и воздушного зазоров

Для чего в жилых домах каркасной конструкции обустраивают вентиляционные зазоры

Стены каркасных зданий возводят с вентиляционными (воздушными) зазорами. Т.е. между слоем гидроизоляции основания и облицовочным материалом оставляется небольшое пространство для свободного перемещения воздушного потока.

В качестве изоляционного материала используют нетканые материалы, часто специальную пленку «Tyvek». Необходимый зазор получают с помощью набивки вертикальных брусков сверху ветрозащитной мембраны. Затем к этим брускам крепят выбранный облицовочный материал, например, деревянные панели, пластиковую вагонку или прочий отделочный материал.

Но многие частные застройщики интересуются, можно ли вент зазоры не оставлять в каркасном жилом доме для стен, т.е. укладывать облицовку вплотную к ветрозащитной мембране и крепить непосредственно к элементам каркаса здания. Ведь в таком случае можно значительно сэкономить на дополнительных пиломатериалах.

Специалисты так делать не рекомендуют, потому что вентиляционный зазор исключает контакт влаги с ветрозащитным материалом. И даже, если влага попадет внутрь стены, она через это свободное пространство в виде испарений будет выходить наружу здания. Соответственно поверхности обшивки и изоляции с внутренней стороны будут всегда сухими.

Еще один вопрос, который интересует частных застройщиков, как может попасть влага на тыльную сторону облицовочного материала:

  1. Во-первых, если облицовочный материал изготовлен из древесины, он будет пропускать внутрь влагу благодаря капиллярному эффекту;
  2. Во-вторых с обратной стороны, например, паронепроницаемого сайдинга, может образовываться конденсат. Особенно это характерно для стен, расположенных с наиболее солнечной или наоборот теневой стороны.

Как сделать кладку несущей стены?

Возьмем к примеру, кирпичную кладку в два камня – 250 мм. При работе руководствоваться необходимо общепринятым алгоритмом действий, главной основой которого является правильная перевязка. Если кирпич просто уложить друг на друга, ни о какой надежности несущих стен, в этом случае не может быть и речи. Даже используя раствор на основе самого вязкого цемента. Необходимо класть кирпич в перевязку, с самого первого ряда.

Фундамент готов, и вы примерно прикинули необходимое количество камня на два ряда. Работу начинаем с углов. Выкладываем по три кирпича в разные стороны, перпендикулярно фундаментной полосе. Убираем излишки раствора, простукиваем каждый кирпич выравнивая его относительно плоскости. Проверяем это специальным инструментом. Второй ряд, кладем в перевязку. Каждый последующий кирпич, перекрывает вертикальный шов предыдущего ряда. Перевязка значительно повышает прочность конструкции.

Таким образом, необходимо поднять углы с каждой стороны дома на 4-5 кирпичей и только после этого можно приступать к укладке горизонтальных рядов, несущих стен. Чтобы не сбиться и выложить их ровно, от каждого второго кладочного ряда параллельных углов натягивается шпагат, по которому ориентируются выкладывая камень. Высота регулируется количество цемента.

Сравняв горизонтальные стены с угловыми маяками, нужно остановится и проверить общую ровность кирпичной кладки. Дополнительно можно зачистить швы, а где мало раствора заделать просветы. После снова поднимают кладку со всех углов, на 4-5 кирпичей, и по той же технологии выкладывают стену.

Не нужно забывать про оконные и дверные проемы. Оставляете места для установки коробок, предварительно измерив их и наметив место монтажа. Подняв стену, на уровень высоты оконного проема, для соединения поверх кирпича укладывается металлический швеллер, после чего кладка кирпича продолжается в штатном режиме до уровня потолочных перекрытий.

Обустройство вентиляционных зазоров в домах каркасной конструкции

Показатель паропроницаемости стены здания определяет наличие естественной вентиляции.

При низком показателе или полном отсутствии у стройматериала, из которого сделана стена, паропроницаемости, жилой дом нуждается в обустройстве принудительной вытяжной системы.

Про деревянные стены говорят, что они «дышат». Это значит, что древесина имеет свойство пропускать воздух. А вот большинство искусственных стройматериалов такой пропускной способностью не обладают, например, пенопласт, которым часто утепляют каркасные постройки.

Стены, утепленные только минеральной ватой, отличаются высокими паропроводящими характеристиками. Но в данном случае на теплоизоляции собирается конденсат и нарушает теплопроводные качества утеплительного материала.

Чтобы стена жилого дома, возведенного по каркасной технологии, не пропускала холодный воздух, необходимо правильно организовать «пирог». Для этого с внешней стороны стены укладывают мембранную пленку, между ней и внешней облицовкой обязательно делают вентзазор, а внутри стеновые поверхности каркасного дома отделывают пароизоляционным материалом для защиты от паров, образующихся в самом помещении.

Хороший жилой дом, возводимый по каркасной технологии, утепляют минеральной ватой, а между наружной облицовкой и теплоизоляцией обязательно оставляют вентиляционные щели. При этом утеплитель закрывают снаружи парозащитной мембраной, которая не пропускает пар в теплоизоляционный материал, но не препятствует его выходу наружу.

Также вентзазор, который делают в каркасном доме снаружи, предупреждает скапливание конденсата на внутренней стороне отделочного материала.
Необходимость обустройства вентиляционных зазоров в каркасных постройках:

  • Если используемый теплоизоляционный материал при намокании теряет собственные теплосберегающие характеристики;
  • Если для облицовки фасада здания используется отделочный материал, не способный пропускать пар.

Для чего в жилых домах каркасной конструкции обустраивают вентиляционные зазоры

Стены каркасных зданий возводят с вентиляционными (воздушными) зазорами. Т.е. между слоем гидроизоляции основания и облицовочным материалом оставляется небольшое пространство для свободного перемещения воздушного потока.

В качестве изоляционного материала используют нетканые материалы, часто специальную пленку «Tyvek». Необходимый зазор получают с помощью набивки вертикальных брусков сверху ветрозащитной мембраны. Затем к этим брускам крепят выбранный облицовочный материал, например, деревянные панели, пластиковую вагонку или прочий отделочный материал.

Но многие частные застройщики интересуются, можно ли вент зазоры не оставлять в каркасном жилом доме для стен, т.е. укладывать облицовку вплотную к ветрозащитной мембране и крепить непосредственно к элементам каркаса здания. Ведь в таком случае можно значительно сэкономить на дополнительных пиломатериалах.

Специалисты так делать не рекомендуют, потому что вентиляционный зазор исключает контакт влаги с ветрозащитным материалом. И даже, если влага попадет внутрь стены, она через это свободное пространство в виде испарений будет выходить наружу здания. Соответственно поверхности обшивки и изоляции с внутренней стороны будут всегда сухими.

Еще один вопрос, который интересует частных застройщиков, как может попасть влага на тыльную сторону облицовочного материала:

  1. Во-первых, если облицовочный материал изготовлен из древесины, он будет пропускать внутрь влагу благодаря капиллярному эффекту;
  2. Во-вторых с обратной стороны, например, паронепроницаемого сайдинга, может образовываться конденсат. Особенно это характерно для стен, расположенных с наиболее солнечной или наоборот теневой стороны.

Физика процессов внутри стены

Конденсация

А зачем сушить стену? Она что, мокнет что ли? Да мокнет. И для того, чтобы она намокла, ее не нужно поливать из шланга. Вполне достаточно перепада температуры от дневной жары к ночной прохладе. Проблема намокания стены, всех ее слоев, в результате конденсирования влаги могла бы быть неактуальна в морозную зиму, но тут на сцену выходит отопление нашего дома. В результате того, что мы отапливаем наши дома, теплый воздух стремится выйти из теплого помещения и опять происходит конденсация влаги в толще стены. Таким образом, актуальность просушки стены сохраняется в любое время года.

Конвекция

Прошу обратить внимание на то, что на сайте есть хорошая статья про теорию конденсата в стенах

Теплый воздух стремится подняться вверх, а холодный опуститься вниз. И это очень прискорбно, поскольку мы, в наших квартирах и домах, живем не на потолке, где собирается теплый воздух, а на полу, где собирается холодный. Но я, кажется, отвлекся.

Избавиться от конвекции полностью невозможно. И это тоже очень прискорбно.

А вот давайте рассмотрим очень полезный вопрос. Чем конвекция в широком зазоре отличается от той же конвекции в узком? Мы уже поняли, что воздух в зазоре движется в двух направлениях. По теплой поверхности он движется вверх, а по холодной спускается вниз. И вот тут я и хочу задать вопрос. А что происходит посередине нашего зазора? А ответ на этот вопрос довольно сложен. Полагаю, что слой воздуха непосредственно у поверхности движется максимально быстро. Он тянет за собой слои воздуха, которые находятся рядом. Насколько я понимаю, происходит это по причине трения. Но трение в воздухе довольно слабое, поэтому движение соседних слоев значительно менее быстрое, чем “пристенных” Но все равно есть место, где воздух, двигающийся вверх, соприкасается с воздухом, двигающимся вниз. Видимо в этом месте, где встречаются разнонаправленные потоки, происходит нечто вроде завихрений. Завихрения тем слабее, чем ниже скорость потоков. При достаточно широком зазоре эти завихрения могут вообще отсутствовать или быть совершенно незаметны.

А вот если зазор у нас составляет 20 или 30 мм? Тогда завихрения могут быть сильнее. Эти завихрения будут не только перемешивать потоки, но и тормозить друг друга. Похоже, что если и делать воздушный зазор, то надо стремиться сделать его тоньше. Тогда два разнонаправленных конвекционных потока будут друг другу мешать. А нам того и надо.

Принцип работы

Движение воздушных масс в пространстве вентилируемых систем осуществляется через входные проушины, расположенные в цокольной части здания. Выход происходит через специальные отверстия в парапете и через русты между облицовочными плитами. Причём минимальный размер диаметра вентиляционных проёмов как для отработанного так и для свежего воздуха должен составлять не более 20 мм.

  • При отделке керамогранитом воздушный обмен происходит только через горизонтальные русты;
  • использование композитных материалов позволяет осуществлять вентиляцию через вертикальные.

Движение воздуха в вентилируемых системах должно происходить только с преодолением некоторого сопротивления в виде внутренних отбортовок кассет или плит.

Рассмотрим несколько забавных примеров.

Первый пример

Пусть у нас есть стена с воздушным зазором. Зазор глухой. Воздух в этом зазоре не имеет связи с воздухом вне зазора. С одной стороны стены тепло, с другой холодно. В конечном счете это означает, что и внутренние стороны в нашем зазоре точно так же различаются по температуре. Что происходит в зазоре? По теплой поверхности воздух в зазоре поднимается вверх. По холодной опускается вниз. Поскольку это один и тот же воздух, то образуется круговорот. В процессе этого круговорота тепло активно переносится с одной поверхности на другую. Причем активно. Это значит, что сильно. Вопрос. Полезную функцию выполняет наш воздушный зазор? Похоже, что нет. Похоже, он нам активно стены охлаждает. Есть ли хоть что-то полезное в этом нашем воздушном зазоре? Нет. Похоже, что ничего полезного в нем нет. В принципе и во веки веков.

Второй пример.

Предположим, мы сделали вверху и внизу отверстия для того, чтобы воздух в зазоре сообщался с внешним миром. Что у нас изменилось? А то, что теперь круговорота как бы нет. Либо он есть, но есть и подсос и выход воздуха. Теперь воздух нагревается от теплой поверхности и, возможно частично, вылетает наружу (теплый), а снизу на его место приходит холодный с улицы. Хорошо это или плохо? Сильно ли отличается от первого примера? С первого взгляда становится даже хуже. Тепло выходит на улицу.

Я же отмечу следующее. Да, теперь мы греем атмосферу, а в первом примере мы грели обшивку. На сколько первый вариант хуже или лучше второго? Знаете, я думаю это примерно одинаковые варианты по своей вредоносности. Это мне интуиция моя подсказывает, поэтому я, на всякий случай, на своей правоте не настаиваю. Но зато у нас в этом втором примере получилась одна полезная функция. Теперь наш зазор стал из воздушного вентиляционным, то есть мы добавили функцию выноса влажного воздуха, и значит, просушки стен.

А в вентиляционном зазоре конвекция есть или там воздух в одну сторону движется?

Конечно есть! Точно так же теплый воздух движется вверх, а холодный идет вниз. Просто это не всегда один и тот же воздух. И вред от конвекции тоже есть. Поэтому вентиляционный зазор точно так же, как и воздушный, не нужно делать широким. Ветер в вентиляционном зазоре нам не нужен!

А что хорошего в просушке стены?

Выше я назвал процесс переноса тепла в воздушном зазоре активным. По аналогии назову процесс переноса тепла внутри стены пассивным. Ну может быть такая классификация не слишком строгая, но статья моя, и в ней я имею право на такие безобразия. Так вот. Сухая стена имеет теплопроводность значительно меньше, чем сырая. В итоге тепло будет медленнее доходить изнутри теплой комнаты к вредоносному воздушному зазору и выноситься наружу тоже станет меньше. Банально конвекция замедлится, поскольку левая поверхность нашего зазора будет уже не такой теплой. Физика увеличения теплопроводности сырой стены в том, что молекулы пара передают при столкновениях друг с другом и с молекулами воздуха больше энергии, чем просто молекулы воздуха при соударении друг с другом.

Нужен ли зазор при укладке пароизоляции

При укладке париозоляции на обрешетку нужно оставлять зазор.

Один из самых распространенных вопросов – это как класть пароизоляцию на потолок: с зазором или без. Речь идет про зазор между пленкой и утеплителем, а также между пленкой и финишной отделкой. Пар движется из теплой среды в холодную, из отапливаемого помещения в неотапливаемое или на улицу. Соответственно, пленка укладывается между теплой средой и утеплителем. Пар наталкивается на изоляционный слой и, не находя себе выход, часть его возвращается обратно в помещение, а часть конденсируется на пленке.

Если не будет зазора между пароизоляцией и внутренней отделкой стен, то последняя будет контактировать со сконденсировавшейся влагой. В результате чего со временем появится плесень, а материал отделки разрушится. При наличии зазора влага будет иметь возможность выпариться, поэтому буферная воздушная зона в этом случае нужна.

Зазор между пленкой и утеплителем совсем необязателен, так как та мизерная часть влаги, которая попала в теплоизоляцию, все равно двигается в направлении от пароизоляции. Если теплоизоляционный пирог сделан неправильно и пар не имеет возможности выхода из утеплителя, то зазор никак не повлияет на ситуацию. Проблему может решить только устранение ошибок монтажа.

Нужна ли вентиляция в каркасном строении?

Особенности стен каркасного дома таковы, что они удерживают тепло внутри, позволяя снизить затраты на энергоресурсы. Обеспечивается это за счет послойной укладки утеплителя, пароизоляционного материала, внешней, внутренней отделки. Пластиковые окна, наиболее часто устанавливаемые в новых домах, также сохраняют внутреннее тепло, не позволяя ему выходить наружу.

Оборотная сторона такой энергоэкономичности – постоянно повышенный уровень влажности в доме, неорганизованное отведение отработанного воздуха из помещений. Пароизоляционный защитный слой сдерживает конденсат, который остается впоследствии внутри стен. Накапливаясь, он вредит утеплителю, отделке стен, каркасу дома, которые начинают гнить. В Интернет есть видео, демонстрирующие, как такой дом сгнивает за несколько лет из-за несоблюдения правил и отсутствия налаженной системы проветривания.

Кроме того, вентиляцию в каркасном доме необходимо организовать для того, чтобы внутри комнат не скапливались пары химических веществ, которыми обработаны брусья каркаса, обвязка, утеплитель стен и т.д. Эти элементы обязательно обрабатываются антисептическими средствами, призванными защитить дом от насекомых, грызунов, которые любят селиться внутри стен (можно убедиться, почитав любой строительный форум).

Как рассчитать точку росы?

Непреложное правило для обывателей – обратиться к профессионалам-проектировщикам, если первоначальный документ не дал ясности или был неверен в расчетах по системе вентиляции, используемому утеплителю, и другим слоям. Ошибку заметно по образованию конденсата на стенах и потолке, промерзающих углах и даже по плохому самочувствию домочадцев.

Специалисты пользуются следующими методами определения точки росы:

  1. Таблицы СНиП в части проектирования тепловой защиты объектов. Используются реальные параметры жилого дома – внутренняя температура и влажность помещений.
  2. Метод расчетов по формулам. Результаты ненамного отличаются от табличных показателей.
  3. Использование специального прибора – термогигрометра, автоматически определяющего точку росы.

В итоге, специалист определит, как и чем утеплять, гидро- и пароизолировать стены таким образом, чтобы сместить точку росы к наружной обшивке, оставляя древесину и многослойную защиту сухими, а, следовательно, долговечными.

Зависимость точки росы от утепленных и неутепленных стен

Нестабильный климат регионов диктует условия при подходе к выбору утеплителя и других слоев. Можно ли обойтись без утепления стен, если наружная температура это позволяет? Нужно ли использовать дополнительное утепление, если запланированная толщина материала недостаточная для тепла? Разберем подробно:

  • Неутепленные стены при стабильном климате остаются сухими круглый год. Тем не менее резкие похолодания способны вызывать движение точки росы внутрь дома. И если такое положение задержится минимум на неделю, это закономерно вызовет конденсат на стенах.
  • Слишком толстый утеплитель ведет к образованию конденсата под обшивкой. Отчего древесина каркаса гниет, а материал слеживается, теряя свойства. При этом такой дефект нельзя заметить сразу.

Вывод: тщательный расчет точки росы – залог долговечности каркасного дома.

Когда вентзазор не нужен

Ниже приведены несколько случаев, когда данный строительный аспект нет нуждается в реализации:

  • Если стены дома из бетона
    Если стены вашего дома сделаны, например, из бетона, то вентзазор можно не делать, поскольку данный материал не пропускает пар из помещения наружу. Следовательно, проветривать будет нечего.
  • Если внутри помещения пароизоляция
    Если с внутренней стороны помещения была установлена пароизоляция, то зазор тоже не нуждается в организации. Избыток влаги попросту не будет выходить сквозь стену, поэтому просушивать его не нужно.
  • Если стены обработаны штукатуркой
    Если ваши стены обработаны, например, фасадной штукатуркой, то зазор не нужен. В случае, когда внешний материал обработки хорошо пропускает пар, дополнительных мер для вентиляции обшивки принимать не требуется.

Особенности влагонакопления в стенах с фасадным утеплением пенопластом, пенополистиролом

Утеплители из вспененных полимеров — пенопласта, пенополистирола, пенополиуретана, обладают очень низкой паропроницаемостью. Слой плит утеплителя из этих материалов на фасаде служит барьером для пара. Конденсация пара может происходить только на границе утеплителя и стены. Слой утеплителя препятствует высыханию конденсата в стене.

Для предотвращения накопления влаги в стене с полимерным утеплителем необходимо исключить конденсацию пара на границе стены и утеплителя. Как это сделать? Для этого необходимо сделать так, чтобы на границе стены и утеплителя температура всегда, в любые морозы, была бы выше температуры точки росы.

Указанное выше условие распределения температур в стене обычно легко выполняется, если сопротивление теплопередаче слоя утеплителя будет заметно больше, чем у утепляемой стены. Например, утепление «холодной» кирпичной стены дома пенопластом толщиной 100 мм. в климатических условиях средней полосы России обычно не приводит к накоплению влаги в стене.

Совсем другое дело, если пенопластом утепляется стена из «теплого» бруса, бревна, газобетона или поризованной керамики. А также, если для кирпичной стены выбрать очень тонкий полимерный утеплитель. В этих случаях температура на границе слоев может легко оказаться ниже точки росы и, чтобы убедиться в отсутствии влагонакопления, лучше выполнить соответствующий расчет.

Выше на рисунке показан график распределения температуры в утепленной стене для случая, когда сопротивление теплопередаче стены больше, чем слоя утеплителя. Например, если стену из газобетона с толщиной кладки 400 мм. утеплить пенопластом толщиной 50мм., то температура на границе с утеплителем зимой будет отрицательной. В результате будет происходить конденсация пара и накопление влаги в стене.

Толщину полимерного утеплителя выбирают в два этапа:

  1. Выбирают, исходя из необходимости обеспечить требуемое сопротивление теплопередаче наружной стены.
  2. Затем выполняют проверку на отсутствие конденсации пара в толще стены.

Если проверка по п.2. показывает обратное, то приходится увеличивать толщину утеплителя. Чем толще полимерный утеплитель — тем меньше риск конденсации пара и влагонакопления в материале стены. Но, это приводит к увеличению расходов на строительство.

Особенно большая разница в толщине утеплителя, выбранного по двум вышеуказанным условиям, имеет место при  утеплении стен с высокой паропроницаемостью и низкой теплопроводностью. Толщина утеплителя для обеспечения энергосбережения получается для таких стен сравнительно маленькой, а для отсутствия конденсации — толщина плит должна быть неоправданно большой.

Поэтому, для утепления стен из материалов с высокой паропроницаемостью и низкой теплопроводностью выгоднее использовать минераловатные утеплители. Это относится прежде всего к стенам из дерева, газобетона, газосиликата, крупнопористого керамзитобетона.

Устройство пароизоляции изнутри обязательно для стен из материалов с высокой паропроницаемостью при любом варианте утепления и облицовки фасада.

Для устройства пароизоляции внутреннюю отделку выполняют из материалов с высоким сопротивлением паропроницанию — на стену наносят грунтовку глубокого проникновения в несколько слоев, цементную штукатурку, виниловые обои или используют паронепроницаемую пленку.

Все описанное выше относится не только к стенам, но и к другим конструкциям, ограждающим тепловой контур здания — чердачным и цокольным перекрытиям, мансардным крышам.

Посмотрите видео, в котором наглядно показаны теплофизические процессы в утепленных скатах крыши. Аналогичные процессы происходят и в наружных стенах зданий.

https://youtube.com/watch?v=6i5qGiQ5PUo

Прочитав эту статью, Вы узнали, как сделать стену сухой.

Стена должна быть еще и теплой. Об этом читайте в следующей статье.

Для чего нужен расчет

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Промежуточные выводы

Пришло время подвести некие итоги, без которых не хотелось бы двигаться дальше.

В воздушном зазоре нет ничего хорошего.

Да действительно. Как показано выше, простой воздушный зазор не несет никаких полезных функций. Это должно означать, что его следует избегать. Но я всегда мягко относился к такому явлению, как воздушный зазор. Почему? Как всегда по ряду причин. И, кстати, каждую я могу обосновать.

Во-первых, воздушный зазор – явление технологическое и без него бывает просто не обойтись.

Во-вторых, если не обойтись, то зачем мне излишне запугивать честных граждан?

А в-третьих, вред от воздушного зазора не занимает первых мест в рейтинге ущерба теплопроводности и строительных ляпов.

Но прошу запомнить следующее, во избежание будущих недопониманий. Воздушный зазор никогда и ни при каких обстоятельствах не может нести функцию уменьшения теплопроводности стены. То есть воздушный зазор не может сделать стену теплее.

И если уж делать зазор, то надо делать его уже, а не шире. Тогда конвекционные потоки будут препятствовать друг другу.

У вентиляционного зазора полезная функция всего одна.

Это так и это очень жаль. Но эта единственная функция крайне, просто жизненно важна. Более того, без нее просто нельзя. Кроме того, далее мы рассмотрим варианты уменьшения вреда от воздушных и вентиляционных зазоров при сохранении положительных функций последних.

Вентиляционный зазор, в отличие от воздушного, может улучшить теплопроводность стены. Но не за счет того, что воздух в нем имеет малую теплопроводность, а за счет того, что основная стена или слой теплоизолятора становится суше.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий