Как подключить солнечную батарею: сборка и схема подключения

Что такое солнечная батарея?

Солнечная батарея – это полупроводниковое устройство, которое преобразовывает солнечное излучение в электрическую энергию. Главной задачей такой системы является надежное, экономное и бесперебойное электроснабжение дома. Такие устройства целесообразно устанавливать в районах, где существуют перебои с подачей от основного источника электроэнергии.

Солнечная электростанция не эффективно работает ночью и в пасмурные дня, в то время как пик электропотребления приходится именно на вечерние часы

Главными преимуществами солнечной батареи являются:

  • простая установка устройства, которая не требует прокладывания кабелей к опорам;
  • система не требует больших временных затрат на свое обслуживание;
  • выработка электроэнергии не оказывает пагубного влияния на окружающую среду;
  • конструкция не имеет подвижных частей;
  • бесшумный режим работы;
  • поставка электроэнергии не зависит от распределительной сети;
  • длительный период эксплуатации системы при минимальных затратах.

Недостатки солнечной батареи:

  • процесс изготовления системы весьма трудоемкий;
  • солнечная панель занимает много места;
  • устройство очень чувствительно к загрязнению;
  • ночью батарея не работает;
  • эффективность работы устройства напрямую зависит от погодных условий, а именно от солнечных и пасмурных дней.

В зимнее время стоит позаботиться о возможности очистки солнечных панелей от изморози и снега

Подбор контроллера по напряжению и току солнечных батарей и акб

Большинство выпускаемых солнечных батарей имеет номинальное напряжение 12 или 24 вольта. Это сделано для того чтобы можно было заряжать аккумуляторные батареи без дополнительного преобразования напряжения. Аккумуляторные батареи появились значительно раньше солнечных батарей и имеют распространённый стандарт номинального напряжения на 12 или 24 вольта. Соответственно большинство контроллеров для солнечных батарей выпускается с номинальным рабочим напряжением равным 12 или 24 вольта, а также двухдиапазонные на 12 и 24 вольта с автоматическим распознаванием и переключением напряжения.

Номинальное напряжение на 12 и 24 вольта достаточно низкое для мощных систем. Для получения необходимой мощности приходится увеличивать количество солнечных батарей и аккумуляторов, соединяя их в параллельные контуры и значительно увеличивая силу тока. Увеличение силы тока ведет к нагреву кабеля и электрическим потерям. Необходимо увеличивать толщину кабеля, возрастает расход металла. Также необходимы мощные контроллеры, рассчитанные на высокий ток, такие контроллеры получаются очень дорогими.

Чтобы исключить возрастание тока, контроллеры для мощных систем делают для номинально рабочего напряжения на 36, 48 и 60 Вольт. Стоит заметить, что напряжение контроллеров кратно по напряжению 12 вольтам, для того чтобы можно было подключать солнечные батареи и акб в последовательные сборки. Контроллеры с кратным напряжением выпускаются только для технологии зарядки ШИМ.

Как видно ШИМ контроллеры выбираются с напряжением кратным 12 вольтам, причем в них входное номинальное напряжение от солнечных батарей и номинальное напряжение контура подключенных аккумуляторов должно быть одинаковым, т.е. 12В от СБ – 12В к АКБ, 24В на 24, 48В на 48В.

У контроллеров MPPT входное напряжение может быть равным или произвольно выше в несколько раз без кратности 12 Вольтам. Обычно MPPT контроллеры имеют входное напряжение от солнечных батарей от 50 Вольт для простых моделей и до 250 вольт для мощных контроллеров. Но следует учесть, что опять же производители указывают максимальное входное напряжение, и при последовательном подключении солнечных батарей следует складывать их максимальное напряжение, или напряжение холостого хода. Проще говоря: входное максимальное напряжение любое от 50 до 250В, в зависимости от модели, номинальное или минимальное входное при этом будет 12, 24, 36 или 48В. При этом выходное напряжение для заряда АКБ у контроллеров MPPT стандартное, часто с автоматическим определением и поддержкой напряжений на 12, 24, 36 и 48 Вольта, иногда 60 или 96 вольт.

Существуют серийные промышленные очень мощные MPPT контроллеры с входным напряжением от солнечных батарей на 600В, 800В и даже 2000В. Данные контроллеры также можно свободно приобрести у российских поставщиков оборудования.

Окромя выбора контроллера по рабочему напряжению, контроллеры следует выбирать по максимальному входному току от солнечных батарей и максимальному току заряда акб.

Для ШИМ контроллера, максимальный входной ток от солнечных батарей будет переходить в зарядный ток АКБ, т.е. контроллер не будет заряжать большим током, чем выдают подключенные к нему солнечные батареи.

В MPPT контроллере все иначе, входной ток от солнечных батарей и выходной ток для заряда акб – это разные параметры. Эти токи могут быть равными, если номинальное напряжение подключенных солнечных батарей равно номинальному напряжению подключенных акб, но тогда теряется суть преобразования MPPT, и эффективность контроллера уменьшается. В MPPT контроллерах номинальное входное напряжение от солнечных батарей должно быть выше номинального напряжения подключенных АКБ оптимально в 2-3 раза. Если входное напряжение выше ниже чем в 2 раза, к примеру, в 1,5 раза, то будет меньшая эффективность, а выше более чем в 3 раза, то будут большие потери на разницу преобразования напряжения.

Соответственно входной ток всегда будет равен или ниже максимальному выходному току заряда АКБ. Отсюда следует, что MPPT контроллеры необходимо выбирать по максимальному зарядному току АКБ. Но чтобы не превысить данный ток, указывается максимальная мощность подключаемых солнечных батарей, при номинальном напряжении контура подключенных АКБ. Пример для контроллера заряда MPPT на 60 Ампер:

  • 800Вт при напряжении АКБ электростанции 12В;
  • 1600Вт при напряжении АКБ электростанции 24В;
  • 2400Вт при напряжении АКБ электростанции 36В;
  • 3200Вт при напряжении АКБ электростанции 48В.

Следует заметить, что данная мощность при 12 вольт указана для зарядного напряжения от солнечных панелей в 13 — 14 Вольт, и кратна для остальных систем с напряжениями на 24, 36 и 48вольт.

Основы и состав солнечных станций

Назначение гелиопанелей — сбор и концентрация (притягивание) на себе солнечного света (ультрафиолета), преобразование его через контроллеры, инвертор в электричество и подача его через аккумуляторные батареи или напрямую в сеть 220 В (или 380 В) дома.

Излишки электричества можно продавать. Одно из преимуществ системы — полная автономность, автоматичность. Недостаток — зависимость от погоды, климата, затенения.

Стандартная цель пользователя — подобрать элементы так, чтобы они окупились за наименьший срок. Поэтому очень важна правильная сборка — от нее зависит эффективность оснащения.

Из чего состоит бытовая солнечная станция

Теперь немного познакомимся с тем, без чего получить электроэнергию для дома из гелиопанелей не получится.

  1. Солнечная панель — выдает электричество под влиянием солнечного света. Тут надо понимать, что размеры панели могут быть разные. Но солнечная батарея на балконе категорически обязана вписываться в габариты лоджии:И иметь размеры 540×620×30 мм. Вес одной панели порядка четырех килограмм. Ценник для гелиопанели в 50 Вт начинается от 5000 рублей.Понятно, что балконы по размеру разные. Если принять в расчет указанные габариты, таких панелей можно разместить от 2 до 4-х штук.
  2. Аккумулятор накапливает преобразованную солнечную энергию.
  3. Контроллер — с его помощью постоянный ток от аккумулятора перестраивается в ток, который пойдет по цепи дальше.
  4. Инвертор — нужен для преображения постоянного тока, поступающего с клемм аккумулятора, в переменный, иногда комбинируется с контроллером.

Типы аккумуляторов

В солнечной энергетике наибольшей популярностью пользуется герметичный свинцово-кислотный аккумулятор, производимый с использованием 2 различных технологий:

  1. Gelled Electrolite.
  2. Absorptive Glass Mat.

Технология Gelled Electrolite стала применяться в конце 50-х годов. Она заключается в добавлении оксида 4-хвалетного кремния в электролит, что способствует переходу электролита в гелеобразное состояние. Этот метод позволяет достичь абсолютной герметичности батареи, а циркуляция газов осуществляется в многочисленных порах желеобразного электролита. Большой плюс гелевых аккумуляторов для солнечных батарей, производимых с применением технологии Gelled Electrolite, это отсутствие необходимости доливки воды в течение всей эксплуатации.

Технология Absorptive Glass Mat была разработана в 70-е годы. Она предполагает использование пористого стекловолоконного заполнителя-сепаратора. Его пропитывают электролитом и тем самым переводят в безжидкостное состояние. Дозируя количество электролита, добиваются того, чтобы заполненными оказались лишь мелкие поры, так как более крупные предназначаются для свободной циркуляции газов. AGM-батареи также не требуют дополнительного обслуживания.

Солнечные аккумуляторные батареи, производимые и по первой, и по второй технологии, обладают как достоинствами, так и недостатками. Узнать о них более подробно Вы сможете из таблиц 1 и 2.

Таблица 1. Преимущества

AGM технологияGEL технология
Абсолютно герметичная конструкция исключает возможность утечки кислоты и коррозии клемм, а также позволяет монтировать АКБ в любом положении, за исключением вверх дном.Допускается установка аккумулятора на боковую поверхность и вверх дном. Являются более устойчивыми к глубоким разрядам.
Исключена возможность взрыва и выделения газов, но при условии правильной зарядки.Стабильная работа при повышенной влажности и высоком уровне вибрации.
Стабильная работа батареи при температуре ниже -30°С.Возможность эксплуатации при температурном режиме выше +50°С и ниже -35°С, а также вблизи чувствительных электронных устройств.
Увеличение срока службы за счет повышенной виброустойчивости.Увеличение срока службы за счет использования активного материала, увеличивающего емкость аккумуляторной батареи.
Время полной зарядки аккумулятора в 7 раз меньше, чем время зарядки обычной свинцово-кислотной АКБ.Минимальная цена в категориях «Цена/Количество месяцев службы» и «Цена/Число циклов».

Таблица 2. Недостатки

AGM технологияGEL технология
Из-за меньшего количественного содержания электролита обладают повышенной чувствительностью к превышению зарядного напряженияВ сравнении с классическими аккумуляторами гелевые АКБ имеют худшие показатели нагрузочных характеристик

Основы и состав солнечных станций

Назначение гелиопанелей — сбор и концентрация (притягивание) на себе солнечного света (ультрафиолета), преобразование его через контроллеры, инвертор в электричество и подача его через аккумуляторные батареи или напрямую в сеть 220 В (или 380 В) дома.

Излишки электричества можно продавать. Одно из преимуществ системы — полная автономность, автоматичность. Недостаток — зависимость от погоды, климата, затенения.

Стандартная цель пользователя — подобрать элементы так, чтобы они окупились за наименьший срок. Поэтому очень важна правильная сборка — от нее зависит эффективность оснащения.

Литература и ссылки

  1. habr.com/ru/news/t/370459
  2. habr.com/ru/company/beeline/blog/154423
  3. habr.com/ru/post/158875
  4. В.Мейлицев Фукусима навеяла. Журнал «Техника –молодежи» №8 2011
  5. В. Полякова «Солнечная энергетика – своими руками» Юный техник, №4 за 2011 год, с. 73-77
  6. habr.com/ru/post/251359
  7. habr.com/ru/post/455154

Автор материала – Denev.

   Форум по обсуждению материала ПОДКЛЮЧЕНИЕ СОЛНЕЧНОЙ БАТАРЕИ

ПРОВОДНИКИ И ИЗОЛЯТОРЫ

Что такое изолятор и чем он отличается от токопроводящего материала. Занимательная теория радиоэлектроники.

ИОНИСТОРЫ В СХЕМАХ БЕСПРОВОДНОЙ СВЯЗИ

Теория и практика применения суперконденсаторов в различных системах беспроводной связи IoT.

СХЕМЫ ЭЛЕКТРОМАГНИТНЫХ ПИСТОЛЕТОВ

Приводится несколько рабочих схем электромагнитных Gauss Gun. Первая часть сборника.

ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР

Самодельный функциональный генератор сигналов 0,1 Гц – 100 кГц на микросхеме ICL8038.

Варианты установки

Основной проблемой в подобных условиях является ограниченность подходящей для монтажа площади. Кроме того, следует учитывать предпочтительность выхода окон на юг или относительно небольшое отклонение от данного направления, которое можно компенсировать не во всех случаях.

Вариантов у владельцев квартиры всего три.

1. Установка солнечных батарей для квартиры на балконе

Является не самым оптимальным вариантом. Главные недостатки:

  • требование максимально близкой к перпендикуляру ориентации рабочих плоскостей панелей относительно солнца;
  • возможность использовать минимальную площадь, из-за чего совокупная мощность станции не превысит 1-2 кВт.  

По этой причине мини СЭС такого типа применяются для ограниченного количества целей:

  • обустройства на балконе «зимнего сада», для освещения и обогрева которого генерации будет достаточно даже зимой. Использовать такие солнечные батареи для отопления всей квартиры не получится;
  • обеспечения питанием наиболее важных потребляющих ток устройств – осветительных приборов, ноутбуков, газовых котлов – в случае отключения электроэнергии.

Теоретически монтаж и пуско-наладку можно провести самостоятельно, но во избежание проблем лучше обратиться к специалистам MyWatt.

2. Комплект солнечных батарей для квартиры на несущей стене здания

Более сложный технически, но обладающий расширенным функционалом и увеличенной мощностью вариант. Недостатки «балконной» установки в нем практически отсутствуют. Из достоинств модификации следует отметить:

  • за счет варьирования формы и конструкции крепежа панелям можно придавать оптимальный угол наклона в широком диапазоне;
  • единственным непреодолимым обстоятельством является отсутствие места на стене, освещаемого солнцем. Это возможно только при расположении дома в окружении деревьев с густой листвой или постоянного отбрасывания тени близлежащими высокими зданиями;
  • суммарная мощность станции и удельный КПД оказывается значительно выше, чем при размещении на балконе.

3. Солнечные панели для квартиры на кровле высотного здания

Вариант, наиболее привлекательный с точки зрения возможностей, но характеризующийся серьезными административными сложностями и техническими ограничениями.

Главная технологическая проблема состоит в непрактичности использования такой СЭС жильцами квартир, расположенных на нижних этажах высоких зданий. Связано это с прямой зависимостью величины энергетических потерь от длины кабелей. При расстоянии до крыши в десятки метров КПД системы может упасть на 15-25%.

Тем не менее, в южных регионах России подобные СЭС в многоэтажных домах функционируют уже не один год. Правда, устанавливаются они сразу для всего дома за счет застройщика, и покрывают в основном потребность освещения подъездов и питания лифтов.

Теоретически такая станция ограничена по мощности только площадью кровли. Монтаж на плоских крышах тоже не составляет труда и позволяет:

  • развернуть панели в любом направлении и под любым углом;
  • использовать солнечные батареи даже для отопления квартиры.

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

Нам понадобится:

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки

Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Напряжение 12V или 24V?

Ошибка №9
Для бытового использования лучшими являются панели на 12V, а применение на 24V не оправдано.

Объясняется это во-первых, проблемами с подбором аккумуляторов для сборки на 24В:

одинаковый производитель

одинаковая емкость

применение балансиров

батареи близкие по дате выпуска

Замечания надо сказать справедливые.

Во-вторых, на 12В можно взять любые АКБ, в том числе б/у + использовать множество унифицированных приборов напрямую, минуя инвертор – зарядники, блоки питания, камеры видеонаблюдения, лампы на 12V.

Но все это справедливо для небольшой мощности до 1кВт. С массовым внедрением гелевых, LiFePO4 аккумуляторов, универсальных MPPT контроллеров и гибридных инверторов (о них чуть ниже) многое поменялось.

С ними вы спокойно можете последовательно объединять панели в большие сборки, передавать напряжение с крыши до 100 Вольт и более, а уже в контроллере преобразовывать его в 12В или 24В, параллельно сбрасывая как на балласт, так и подключая нагрузку 220В.

Схемы подключения солнечных панелей и как при этом будут себя вести напряжение и ток (нажмите на плюсик для раскрытия содержимого).

Ошибка №10
Чтобы вы понимали, когда говорят о системе 12V или 24V-48V, речь идет в первую очередь не о напряжении самих панелей, а о схеме подключения сборок АКБ.

Один и тот же контроллер может работать как на 12В, так и на 24В. Во втором случае пропуская через себя гораздо большую нагрузку.

Если грубо подытожить, то используйте солнечную электростанцию (СЭС):

на 12V – до 1кВт

на 24V – до 3кВт

на 48V – свыше 3кВт

Совмещение гелиоэнергии и стационарной сети

Планируя использовать электроэнергию от солнца параллельно с обустроенной централизованной стационарной сетью, схему подключения делают несколько иной. И основная причина такого решения в том, что у частного потребителя нет возможности «сбрасывать» оставшуюся энергию.

А это может спровоцировать перепады напряжения длительностью до одной секунды.

При совмещении солнечной электроэнергии со стационарной централизованной сетью руководствуются все тем же правилом: чем больше источников подключается, тем сложнее становится схема

Согласно выше приведенной схеме, напряжение от гелиополя первым делом направляется в сторону АКБ, а уже оттуда и передается на нагрузку.

Проектируя такой вариант монтажа в расчет стоит брать два вида нагрузки:

  • не резервируемая – свет в доме, бытовая техника и пр.;
  • резервируемая – аварийное освещение, холодильник, электрический котел.

Учитывайте: чем больше емкость аккумулятора, тем больше проработают в автономном режиме резервируемые электроприборы.

Выбирая такой способ генерации энергии в сеть, будьте готовы к тому, что придется оформлять разрешение в местных энергосетях.

Несмотря на то, что инверторы для солнечных батарей вырабатывают напряжение, качество которого порой выше того, что в централизованной сети, местные энергосети не дают добро на то, чтобы электросчетчик вращался в обратную сторону.

По этой причине согласно схеме солнечные инверторы прекращают работу в момент пропадания напряжения в сети. А резервируемая нагрузка начинает «запитываться» от АКБ.

Почему следует контролировать заряд и как работает котроллер заряда солнечной батареи?

Основные причины:

  1. Даст возможность проработать аккумулятору дольше! Перезаряд может спровоцировать взрыв.
  2. Каждый АКБ работает с определенным напряжением. Контроллер позволяет подобрать нужное U.

Так же котроллер заряда отключает батарею от приборов потребления если она сильно села. Кроме этого он производит отсоединение АКБ от солнечного элемента если тот полностью заряжен.

Таким образом происходит страховка и работа системы становится более безопасней.

Принцип работы чрезвычайно прост. Прибор способствует поддержанию баланса и не позволяет напряжение сильно падать или подниматься.

Виды контроллеров для заряда солнечной батареи

  1. Самодельные.
  2. МРРТ.
  3. On/Of.
  4. Гибриды.
  5. PWM типы.

Ниже кратко охарактеризуем эти варианты устройств литиевых и других АКБ

Контроллеры сделанные своими руками

Когда есть опыт и навыки в радиоэлектронике данный прибор можно смастерить самостоятельно. Но вряд ли такой прибор будет иметь высокую эффективность. Самодельное устройство скорее всего подойдет в том случае если ваша станция имеет малую мощность.

Чтобы соорудить данный прибор заряда придется отыскать его схему. Но учтите, что погрешность должна быть 0,1.

Приводим простую схемку.

МРРТ

Способно выполнять отслеживание самого большого предела мощности подзарядки. Внутри программного обеспечения находится алгоритм позволяющим отслеживать уровень напряжения и тока. Оно находит некий баланс, при котором вся установка будет работать с максимальным КПД.

Прибор mppt считается одним из лучших и совершенных на сегодняшний день. В отличие от PMW он увеличивает эффективность системы на 35%. Такое устройство подойдет, когда у вас много солнечных батарей.

Прибор по типу ONOF

Он является самым простым что есть в продаже. У него не так уж и много функций, как у других. Прибор выключает подзарядку АКБ, как только напряжение поднимется до максимума.

К сожалению данный тип контроллера заряда для солнечных батарей неспособен выполнить заряд до 100%. Как только ток прыгнет до максимума происходит отключение. В итоге неполный заряд снижает его срок пользования.

Гибриды

Применяются данные прибору, когда имеется два типа источника тока, например, солнце и ветер. Их конструирование основано на PWM и МРРТ. Основное его отличие от подобных устройств заключается характеристиках тока и напряжения.

Его цель: выровнять нагрузку, идущую на АКБ. Такое происходит из-за неравномерно поступления тока с ветра генераторов. Из-за этого может существенно снижаться срок накопителей энергии.

PWM или ШИМ

В основе работы лежит широтно импульсная модуляция тока. Позволяет решить проблему неполной зарядки. Он понижает ток и тем самым доводит подзарядку до 100%.

В результате работы pwm, не наблюдается перегрев АКБ. В итоге данный блок управления солнечными батареями считается очень эффективным.

Как дома установить солнечные батареи?

Дома солнечные панели фиксируются на специальную конструкцию, взаимодействие с которой дает возможность фотоэлементам противостоять любым негативным климатическим воздействиям (дождю, снегу, ветру). Кроме того, такая система обуславливает формирование благоприятного угла наклона.

Указанные конструкции бывают нескольких конфигураций:

  • наклонного типа – подобные системы прекрасно подходят для установки на скатной крыше;
  • горизонтальный вариант – версия, ориентированная на монтаж на плоской кровле;
  • свободностоящая модель – монтируется на крышах разного размера и любой формы.

Как работает солнечная батарея?

Солнечная энергия преобразуется в последовательно подключённых фотоэлементах. Рассмотрим принцип работы солнечной батареи на уровне фотоэлектрических элементов. Основой фотоэлемента является кристалл кремния. Соединения кремния очень распространены в природе. Самый известный – это оксид кремния или песок. Кристалл кремния можно упрощенно назвать большой песчинкой. Кристаллы выращиваются искусственно в лабораторных условиях. Обычно их получают кубической формы, а затем на пластины. Толщина этих пластин всего 200 микрон. Это в 3─4 раза толще волоса человека.

Принцип работы фотоэлемента

На полученные пластины кремния нанесён с одной стороны слой бора, а с другой ─ фосфора. В местах контакта кремниевой пластины с бором имеется избыток электронов. На другой стороне по границе кремниевой пластины с фосфором недостаёт электронов. Там образуются «дырки», как их принято называть. Такую стыковку границ с избыточным количеством электроном и их недостатком называют p-n переходом.

Мощность одного фотоэлектрического элемента маленькая, а напряжение составляет около 0,5 вольта. Поэтому их последовательно объединяют в батареи по 36 штук, чтобы получить на выходе 18 вольт. Это хватит для того, чтобы зарядить аккумулятор 12 вольт. Здесь ещё нужно учесть, что заявленное напряжение и мощность будут только при работе батареи с максимальной отдачей, что в реальных условиях редкость. Собранная батарея помещается подложку, закрывается стеклом и герметизируется. Используемое стекло должно пропускать ультрафиолет, поскольку солнечная батарея также преобразует и эту часть спектра. Собранные батареи могут объединяться друг с другом в последовательные и параллельные цепочки. Получается небольшая солнечная электростанция.

Сегодня солнечные батареи устанавливаются в своих домах и на дачах для экономии электроэнергии. Такие миниатюрные гелиосистемы работают круглый год. Главное, чтобы поверхность панелей была чистой и светило солнце. В ряде случаев их эффективность выше в морозный солнечный день, чем в летний. Это объясняется тем, что разогрев солнечных модулей несколько снижает эффективность их работы.

Гелиосистема: солнечные батареи и коллекторы

Сразу стоит отметить, что полностью отказаться от электричества из централизованных сетей не получиться. Но, установив солнечную батарею, удастся значительно экономить на коммунальных расходах. Вариант, конечно, не годиться для квартиры. Нормально эксплуатировать такую систему получиться только в загородном доме или на даче, где достаточно места для установки солнечных панелей.

Что касается установки солнечных батарей, то здесь следует отметить следующие моменты:

  • Устанавливать панели нужно на южной стороне крыши, фасада или на участке стороной на юг;
  • Угол наклона соответствует значению широты вашего региона;
  • Рядом не должно быть объектов, отбрасывающих тень на солнечные батареи;
  • Поверхность панелей нужно регулярно очищать от грязи и пыли;
  • Желательно использовать системы с отслеживанием положения солнца.

Теперь вам ясен принцип работы солнечных батарей и их возможности. Понятно, что не следует отказываться от централизованного снабжения электроэнергией. Современные гелиосистемы пока не в состоянии полноценно обеспечивать дом энергией в пасмурную погоду. Но как часть комбинированной системы энергоснабжения дома они очень уместны.

Это интересно: Как устроена и чем хороша лампа КЛЛ

Поделитесь в социальных сетях:FacebookX
Напишите комментарий