Конструкция, назначение и принцип работы гидравлической стрелки
Гидрострелка для отопления состоит из бронзового или стального корпуса с двумя патрубками для подключения к контуру котла (патрубок для подачи + патрубок для обратки), а также нескольких патрубков (как правило 2) для подключения контуров потребителей тепла. В верхней части гидравлического разделителя через шаровой кран или отсекающий клапан монтируется автоматический воздухоотводчик. в нижней части дренажный (сливной) кран. Внутри корпуса заводских гидрострелок часто устанавливается специальная сетка, позволяющая направить мелкие пузырьки воздуха в воздухоотводчик.
Конструкция модели Valtec VT. VAR 00.
Гидравлическая стрелка для отопления выполняет следующие функции:
- Поддержание гидравлического баланса системы. Включение/отключение одного из контуров не влияет на гидравлические характеристики остальных контуров;
- Обеспечение безопасности чугунных теплообменников котлов. Применение гидрострелки позволяет обезопасить чугунные теплообменники от резких перепадов температур (например при проведении ремонтных работ, когда отключается циркуляционный насос, либо при первом включении котла). Как известно, резкое изменение температуры теплоносителя негативно сказывается на чугунных теплообменниках;
- Воздухоотводчик. Гидрострелка для отопления выполняет функции по отводу воздуха из отопительной системы. Для этого в верхней части устройства располагается патрубок для монтажа автоматического воздухоотводчика;
- Наполнение или слив теплоносителя. Большинство как заводских, так и самостоятельно изготовленных гидравлических стрелок оборудуются сливными кранами, через которые возможно производить наполнение или слив теплоносителя из системы;
- Очистка системы от механических загрязнений. Низкая скорость потока теплоносителя в гидравлическом разделителе делает его идеальным устройством для сбора различных механических загрязнений (окалина, накипь, ржавчина, песок и др. шлам). Циркулирующие по системе отопления твердые частицы постепенно скапливаются в нижней части устройства, после чего их можно удалить через сливной кран. Некоторые модели гидрострелок могут дополнительно оборудоваться магнитными уловителями, которые притягивают металлические частицы.
Схема системы отопления с использованием гидравлического разделителя.
Совет! Магнитный уловитель рекомендуется устанавливать до заполнения системы теплоносителем, в противном случае при монтаже уловителя необходимо будет сливать воду из гидравлического разделителя.
Процесс удаления механических частиц через сливной кран:
- Отключаем котел и циркуляционные насосы;
- После того, как теплоноситель остыл, перекрываем участок трубопровода, где расположен сливной кран;
- На сливной кран одеваем шланг подходящего диаметра, либо, если позволяет пространство, подставляем ведро или любую другую емкость;
- Открываем кран, сливаем теплоноситель до тех пор, пока не пойдет чистая вода без содержания загрязнений;
- Закрываем сливной кран, после чего открываем перекрытый участок трубопровода;
- Осуществляем подписку системы и запускаем оборудование.
Сепаратор воздуха и шлама: очистка и защита системы отопления
Чтобы отопительная система функционировала без удручающих сбоев, воздуха в ней быть не должно. Внушительное количество кислорода в теплоносителе может «породить» такие явления, как шумные насосы, батареи, которые не нагреваются. Не меньшим бедствием является и коррозия – процесс разрушения металлов, из которых созданы трубы, клапаны. Для защиты системы от разрушительных процессов применяется специальное устройство – сепаратор. Его задача – собрать кислород, «гуляющий» в воде, затем убрать его из теплоносителя.
Отрицательное влияние воздуха на работу системы отопления
Неискушённому человеку трудно поверить, что обычный воздух может становиться колоссальной проблемой. Но приходится признать: на состояние отопительной системы кислород действует, как медленный яд на живое существо.Приведём лишь некоторые примеры ухудшения работы системы по вине воздуха:
- Мелкие пузырьки воздуха, прилипающие к стенкам радиатора, не позволяют ему отдавать тепло. Эффективность отопительного «организма» резко снижается.
- Насос, подающий воду, быстрее изнашивается.
- Кислород, попадающий в трубы, фильтры, клапаны и потребители, разрушает металл.
- Ржавчина, которая появилась в результате коррозии, «блуждает» вместе с массами воды. Скапливаясь, она становится шламом (грязью) и может привести к неисправности системы.
Методы борьбы с воздухом в трубах
До недавнего времени с присутствием газа в трубах специалисты боролись такими способами:
- следили, чтобы система постоянно находилась под небольшим давлением (эта хитрость защищает от подсасывания кислорода);
- использовали специальные трубы, через стенки которых воздух проникнуть не может;
- в тех участках, где кислороду легче всего скапливаться, устанавливали отводчики воздуха.
Опыт показал, что воздухоотводчик наиболее эффективно справляется с задачей ликвидации кислорода лишь тогда, когда он работает в паре с сепаратором.
Способы проникновения кислорода в систему
Многие люди, расстроенные слабым отоплением в жилище и частым скоплением кислорода в радиаторе, спешат обвинить в этих неприятностях специалистов, которые проектируют и устанавливают отопительное оборудование. Неопытному человеку проще сделать вывод, что элементы системы отопления не слишком качественны, негерметичны, чем разобраться в истинных причинах появления газа в трубах.
Назовём основные способы попадания воздуха в систему:
- Кислород оказывается в трубах в виде микроскопических пузырьков, находящихся в толще воды. Когда вода становится горячей, воздух «убегает» из неё, превратившись в свободный газ. И чем больше нагревается жидкость, тем большее количество газа из неё выйдет.
- Воздух проникает через соединительные элементы (прокладки, воздухоотводчики).
- После ремонтных работ кислород может буквально «ворваться» в систему отопления.
Если говорить откровенно, полностью защитить отопительное оборудование от попадания кислорода нереально. Даже длительный простой системы приводит к тому, что воздуха в ней оказывается слишком много, и его приходится спускать.
Чтобы надёжно защитить трубы, фильтры и другие составляющие отопительной системы, необходим воздушный разделитель (сепаратор). Использование этого компактного приспособления помогает решить проблему «воздушного нашествия». А значит, вы избавитесь от шлама, который появляется из-за активности кислорода.
Отводчик воздуха и сепаратор – не одно и то же
Часто приходится слышать вопросы, чем отличается воздушный разделитель от воздухоотводчика. На первый взгляд, эти два приспособления выполняют одну задачу – удаляют из отопительных систем кислород. Но отводчик воздуха убирает газы из системы постепенно, по мере их скопления.
Сепаратор действует более решительно. Он быстро разделяет газы, растворённые в воде, и выводит их из системы отопления.
Если вы желаете, чтобы все элементы отопительной системы работали бесперебойно, стоит установить разделитель воздуха
Важно подобрать компактное приспособление, которое бы справлялось с обязанностями выведения кислорода из теплоносителя. В последние несколько лет огромной популярностью пользуются сепараторы flamcovent
Эффективность этих приспособлений огромна, ведь в основе их работы лежит принцип слияния. Суть метода: крошечные пузырьки воздуха, соприкасаясь с поверхностью устройства, прилипают к ней. За короткий промежуток времени пузырьки объединяются в большие «облака». Потом они отрываются от сепаратора и всплывают.
Сепараторы с магнитными ловушками
Сепараторы с магнитными ловушками (рис. 11) улавливают нерастворимые примеси железа в воде намного эффективней, чем обычные сепараторы. Стержень с мощным магнитом вставляется снизу снаружи в гильзу сепаратора и вынимается перед операцией вымывания шлама без нарушения герметичности системы. Магнитный стержень отделен стенками гильзы от воды и не требует очистки или защиты от коррозии. Гильза сделана из немагнитного материала, поэтому магнетит оседает вниз и затем шлам смывается через вентиль. Для эффективного вымывания вентиль смещен от центра (создание вихревого эффекта).
Вместо заключения
Диапазон производимых моделей сепараторов позволяет использовать их как для небольших объектов, например коттеджей, так и для защиты объектов мощностью несколько мегаватт и величин потоков несколько сотен кубометров в час, например, крупных котельных и систем водоподготовки. На рис. 12 приведены примеры установки сепараторов.
В системах горячего водоснабжения, как правило, необходимо использовать дополнительные системы защиты от коррозии. Применение сепараторов для дегазации (в верхней точке системы) и удаления шлама (внизу перед циркуляционными насосами или теплообменниками) позволяет достаточно просто и надежно избавиться от свищей, ржавой воды и других проблем.
Литература
1. Gase in kleinen und mittleren Wasserheiznetzen. Technische Universitat Dresden, Institut fur Energietechnik, koordinierter Schlussbericht, AiF Forschungsthema Nr. 11103 B, November 1998.
2. Vermeidung von Schaden in Warmwasserheizungsanlagen, wasserseitige Korrosion. VDI 2035 Bl. 2, Beuth Verlag GmbH, September 1998.
3. Modern hydronic heating for residential and light commercial buildings / by John Siegentaler,1995.
2 Наиболее востребованные модели
Свободная внешняя магнитная система (условный проход) ПСМ применяется там, где появляется вероятность зависания продуктов в сепараторе или появляется вероятность задержки улавливаемых ферромагнитных тел над движущимся слоем продукта.
Сепаратор магнитный ПСМ эффективно улавливает металломагнитные крупные примеси, масса которых превышает 15 граммов. Как правило, сепараторы ПСМ устанавливают в самотечные вертикальные трубы круглого и квадратного сечений.
Описываемый сепаратор обладает следующими техническими данными:
- Производительность до двадцати тонн в час;
- Максимальная рабочая температура до +120°C как у тестораскатки для дома и бизнеса;
- Фракция сепарируемого продукта 0,01-100 мм;
- Влажность сепарируемого продукта не превышает 95%;
- Ручная очистка;
- Срок стабильности магнитных свойств выше 10 лет.
Стоимость таких сепараторов от 30 тысяч рублей. Столько же стоят фен-щетки Филипс. За дополнительную плату покупатель вправе оснастить приобретение дополнительным транспортирующим оборудованием и защитными заграждениями.
Ленточные сепараторы относятся к сфере магнитного обогащения магнетитовых руд. Другими словами, они необходимы для получения высококачественных продуктов. Ленточный магнитный сепаратор сконструирован из 2-ух вращающихся немагнитных барабанов. Внутри каждого из них размещены магнитные системы, выполненные из постоянных магнитов (неодим-железо-бор).
Также на рынке представлены магнитные сепараторы с электромагнитной структурой. Они резко изменяют максимальную напряженность, что позволяет разделять частицы во взвешенном состоянии посредством неоднократного их падения и подъема к магнитной системе. Недостатком данного сепаратора является малое количество циклов перемагничивания сепарируемого материала.
Электродинамический ленточный сепаратор включает транспортирующий орган, вращающуюся магнитную систему и приемники продуктов разделения. Единственным недостатком этого агрегата является наличие тормозящего момента, как следствие, низкая селективность разделения, низкая производительность и невозможность получения качественной продукции.
Ленточные сепараторы используют:
- При высокой скорости конвейера;
- Когда магнитные компоненты имеют узкую и длинную форму;
- Когда металлсодержащие материалы смешаны с влажной компактной смесью.
2.1 Выбор магнитного сепаратора
Магнитный сепаратор — необходимый агрегат на многих производствах. Его применение значительно улучшает качество производимой продукции. Чтобы купить магнитный сепаратор (а купить его сложнее, чем хлебопечи Редмонд или выпрямители для волос), нужно прежде дать определиться со следующими моментами:
- с каким видом продукции он будет работать;
- какова плотность и скорость потока сепарируемых смесей;
- каков тип металлических примесей и рабочая температура аппарата;
- на какую стоимость рассчитываете;
- желаемая мощность и производительность агрегата.
Отдавая предпочтение магнитному сепаратору с выдвижными магнитами и картриджами в виде решеток, имейте в виду, что их лучше использовать при очистке легкотекучих материалов в вертикальном потоке.
Плоские сепараторы созданы для высокоабразивных и крупнозернистых смесей с комками и плохой текучестью. Непрерывно-очищающиеся и самоочищающиеся модели зарекомендовали благодаря возможности работать в труднодоступных местах.
Воздушные сепараторы. Сортирование измельченного материала
Разделение, или сортирование, измельченного материала по крупности зерен производят либо при движении его в воздушном потоке, либо в движущейся струе воды. Наиболее распространена воздушная классификация, которую проводят в воздушных сепараторах-аппаратах, работающих по принципу использования центробежных сил, а также сил тяжести.
Различают три типа воздушных сепараторов:
- Центробежно-воздушные, или механические, в которых воздушный поток замкнут внутри самого сепаратора.
- Воздушно-проходные, или пневматические, с проходным воздушным потоком.
- Вращающиеся, с проходным воздушным потоком.
Центробежно-воздушный сепаратор (рис. 1) состоит из двух конусов, концентрически вставленных один в другой. Во внутреннем конусе 1 на центральном валу расположены крыльчатка вентилятора 5, тарелка 4 и центробежное лопастное колесо 3.
Рис. 1. Центробежно-воздушный сепаратор: 1-патрубок для отвода готового продукта; 2-наружный конус; 3-центробежное колесо; 4-нрашающаяся тарелка; 5-крыльчатка вентилятора; 6-поворотные створки; 7-внутренний конус; 8-патрубок для отвода крупных частиц на повторный размол.
Продукт подается из мельницы на быстро вращающуюся тарелку 4 и отбрасывается центробежной силой к стенке конуса. Вентилятор, расположенный над тарелкой, создает направленный кверху воздушный поток. Частицы материала увлекаются воздухом и проходят через колесо 3, где отделяются мелкие частицы; затем частицы попадают в кольцевое пространство между конусами. Более крупные частицы, не выпавшие под действием силы тяжести, отбрасываются к стенкам внутреннего конуса и удаляются через патрубок 8 в мельницу на повторный размол.
Мелкие частицы сползают по стенкам наружного конуса 2 и удаляются в качестве готового продукта через патрубок 7.
Воздух, освобожденный от частиц материала, возвращается через зазоры между поворотными створками 6 во внутренний конус сепаратора и таким образом совершает замкнутый цикл.
Сепараторы с проходным воздушным потоком выгодно отличаются от механических сепараторов отсутствием вращающихся частей. В самом сепараторе отделяются только более крупные частицы, а готовый продукт удаляется в отдельном циклоне, причем вентилятор устанавливают вне сепаратора.
Наиболее простой и распространенный сепаратор этого типа (рис. 2) состоит из двух конусов, образующих две разделительные камеры-внутреннюю и кольцевую.
Рис. 2. Воздушно-проходной сепаратор: 1-труба для ввода исходного продукта; 2-внутренний конус; 3-наружный конус; 4-поворотные створки; 5-труба для отвода готового продукта; 6-патрубок, для отвода крупных частиц.
Продукт размола поступает в воздушном потоке по трубе 1 со значительной скоростью (15-20 м/сек) и попадает в кольцевое пространство между внутренним конусом 2 и наружным 3. Здесь скорость потока снижается до 4-6 м/сек, благодаря чему из него под действием силы тяжести выпадают наиболее крупные твердые частицы. Далее поток огибает верхний край внутреннего конуса и проходит через направляющие поворотные лопасти (створки) 4, которые придают ему вращательное движение.
Интенсивность отделения частиц зависит от положения лопаток. Если лопатки поставлены тангенциально, то выпадение частиц во внутреннем конусе происходит главным образом под действием центробежной силы, если же они поставлены радиально, то осаждение происходит за счет инерционных сил, при изменении направления движения. В наружном конусе выпадают более крупные частицы, которые через патрубок 6 направляются обратно в мельницу. Продукт тонкого помола выходит вместе с воздухом через трубку 5 и направляется в циклон, где он отделяется от воздушного потока.
Вращающиеся сепараторы с проходным воздушным потоком изготовляют в виде ряда пластин (створок), укрепленных на угольниках и вращающихся вместе с мельницей, или в виде нескольких дисков с лопатками, вращающихся в горизонтальной плоскости, которые устанавливают непосредственно над мельницей (так называемые турбинные сепараторы).
А.Г. Касаткин Основные процессы и аппараты химической технологии (Глава XVIII. Измельчение, грохочение и дозирование твердых тел / Тонкое измельчение)
Способы проникновения кислорода в систему
Многие люди, расстроенные слабым отоплением в жилище и частым скоплением кислорода в радиаторе, спешат обвинить в этих неприятностях специалистов, которые проектируют и устанавливают отопительное оборудование. Неопытному человеку проще сделать вывод, что элементы системы отопления не слишком качественны, негерметичны, чем разобраться в истинных причинах появления газа в трубах.
Назовём основные способы попадания воздуха в систему:
- Кислород оказывается в трубах в виде микроскопических пузырьков, находящихся в толще воды. Когда вода становится горячей, воздух «убегает» из неё, превратившись в свободный газ. И чем больше нагревается жидкость, тем большее количество газа из неё выйдет.
- Воздух проникает через соединительные элементы (прокладки, воздухоотводчики).
- После ремонтных работ кислород может буквально «ворваться» в систему отопления.
Если говорить откровенно, полностью защитить отопительное оборудование от попадания кислорода нереально. Даже длительный простой системы приводит к тому, что воздуха в ней оказывается слишком много, и его приходится спускать.
Чтобы надёжно защитить трубы, фильтры и другие составляющие отопительной системы, необходим воздушный разделитель (сепаратор). Использование этого компактного приспособления помогает решить проблему «воздушного нашествия». А значит, вы избавитесь от шлама, который появляется из-за активности кислорода.
Техническая характеристика сепаратора РЗ-БСД
Производительность, т/ч………7
Эффективность, %………50…60
Расход воздуха, м3/ч……… 3250
Диаметр наружного цилиндра, мм……1174
Размеры пневмосепарирующего канала, мм. . . 2800x60x400
Габаритные размеры, мм……. 1174x1174x2182
Масса, кг…………335
Расход воздуха регулируют дроссельным клапаном, установленным в нижней части отсасывающего воздуховода. Если в нем обнаруживают целые зерна, скорость воздуха уменьшают дроссельным клапаном. Наблюдая в цилиндрическое прозрачное окно, можно заметить неравномерность поступления зерна. В этом случае открывают продольные отверстия для забора воздуха. Дополнительный приток воздуха в верхней части способствует более равномерному распределению зерна.
Аспирационную колонку А1-БКА (рис.) относят к устройствам с каскадным принципом пневмосепарирования, она предназначена для выделения примесей из зерна злаковых культур, разделения продуктов шелушения крупяных культур, отличающихся аэродинамическими свойствами, а также для контроля крупы и лузги.
Рис. Аспирационная колонка А1-БКА
Над питающим валиком 12 размещен грузовой клапан 14, регулирующий толщину слоя продукта. Под валиком 12 расположены наклонные скаты 15 и четыре поворотных клапана, образующих каскады сепарирования. Клапаны 16 позволяют регулировать направление воздушного потока и прохождение продукта в зоне сепарирования. В нижней части корпуса на выходе из машины установлено магнитное устройство 17, представляющее собой набор малогабаритных магнитных дуг, соединенных полюсными накладками.
Осадочная камера 10 имеет вверху клапан 13 для регулирования расхода воздуха и соответственно скорости воздуха в зоне сепарирования. В нижней части камеры расположены два ряда разрезных клапанов 8, которые в процессе работы в результате образующегося вакуума прижимаются к наклонному скату и по мере накопления продукта силой его тяжести открываются, выпуская продукт (легкие примеси), не нарушая герметичности. Для регулирования положения клапанов 16 служат рукоятки 1, установленные на наружной боковой поверхности колонки. Здесь же находятся смотровые окна 6, 7 и 9.
Колонка имеет два прямоугольных отверстия, предназначенных для присоединения самотечной трубы и патрубка для аспирации, к которому подсоединяют воздуховод аспирационной сети. На передней стенке колонки сделаны два люка со съемными фортками 2, которые обеспечивают доступ к питающему валику и магнитному устройству. Электродвигатель 4 и редуктор 3 устанавливают на кронштейне 5, прикрепленном к корпусу 11 колонки.
Продукт через приемное отверстие попадает на питающий валик диаметром 70 мм и равномерной лентой через грузовой клапан поступает на первый неподвижный наклонный скат. Далее, перемещаясь с одного ската на другой, продукт каждый раз изменяет направление движения, образуя четыре каскада. На всем пути перемещения продукт продувается воздушным потоком, который увлекает и уносит в осадочную камеру легкие примеси (лузгу, пыль, мелкий сор и т.д.).
Зерно (или ядро), пройдя все каскады пневмосепарирования, поступает в нижнюю часть корпуса на наклонную плоскость магнитного устройства и, пройдя по ней, выводится из машины, а металломагнитные примеси удерживаются на полюсных накладках. Эти примеси периодически удаляют, очищая рабочую поверхность магнитного устройства. Легкие примеси осаждаются в камере 10 и по мере накопления выводятся из машины.
В период пуска колонки необходимо отрегулировать подачу продукта с помощью грузового клапана 14, общий расход воздуха на колонку (клапан 13) и по каскадам (клапаны 16), ориентируясь на максимально достигнутую технологическую эффективность. Воздушный режим в процессе эксплуатации необходимо периодически регулировать.
Виды воздухоотводчиков
Клапаны для удаления воздушных пробок бывают автоматическими и ручными. Ко второму типу воздухоотводчиков относят краны Маевского. Их используют не только для вывода воздуха, но и для его запуска, чтобы слить теплоноситель из системы.
Кран Маевского
Это устройство изготавливают из латуни, имеет простую, но надёжную конструкцию. Основные детали крана Маевского – это корпус и винт. Все детали клапана максимально плотно расположены друг другу, благодаря чему теплоноситель не может выйти наружу. Открывают кран с помощью специального ключа, отвёртки или рукой.
Перед тем как убрать воздух из системы отопления, необходимо подготовить ёмкость для теплоносителя и инструменты. Пошаговая инструкция удаления воздушных пробок с помощью крана Маевского:
- Если система отопления работает с помощью циркуляционного насоса, то его следует выключить на время сброса воздуха.
- Ключом, отвёрткой или рукой поворачивается кран на 1 оборот против часовой стрелки. Сразу же будет слышно шипение выходящего из радиатора воздуха.
- Как только начал вытекать теплоноситель, значит, воздушная пробка удалена, кран Маевского обратно закрывают.
Автоматический воздухоотводчик
Автоматический воздухоотводчик VALTEC VT.502
Это устройство самостоятельно выводит воздух из системы отопления. Устанавливается либо вертикально или горизонтально. Состоит из латунного корпуса, поплавка, выпускного клапана и шарнирного рычага. Чтобы теплоноситель не мог протечь через него, воздухоотводчик оснащён защитным колпачком.
Обратите внимание! Автоматические устройства чувствительны к примесям, содержащимся в воде. Для длительной их эксплуатации в систему отопления дополнительно устанавливаются очистительные фильтры
Принцип работы следующий: если воздуха в камере нет, то выпускной клапан закрыт
По мере его поступления внутрь поплавок опускается. Как только камера полностью заполняется, выпускной клапан открывается, и воздух выводится наружу. После чего поплавок снова закрывает выпускной клапан
Принцип работы следующий: если воздуха в камере нет, то выпускной клапан закрыт. По мере его поступления внутрь поплавок опускается. Как только камера полностью заполняется, выпускной клапан открывается, и воздух выводится наружу. После чего поплавок снова закрывает выпускной клапан.
Сепаратор воздуха
Это устройство состоит из металлического корпуса, воздухоотвода, сливного крана и трубки с сеткой. В отличие от обычных воздухоотводчиков, сепаратор сам отбирает воздух из воды. Проходя через сетку теплоноситель завихряется, благодаря чему и образуются пузырьки воздуха. В итоге они поднимаются наверх, и газы удаляются через воздухоотводчик. Помимо воздуха сепаратор отделяет песок, ржавчину и другие примеси. Удаляют шлам через сливной кран, расположенный снаружи на дне корпуса.
Как уберечь от повреждений?
Для того чтобы деталь не была повреждена, следует аккуратно с ней обращаться, соблюдая все технические требования по эксплуатации и обслуживанию:
надувной механизм необходимо накачивать специальным насосом;
- после закрытия детали крышкой, ее необходимо вдавить внутрь борта бассейна, чтобы случайно не повредить или не пораниться самому;
- не допускать пересыхания и перегрева надувного отверстия;
- деталь слива должна быть расположена так, чтобы при передвижении не было возможности ее зацепить ногой;
- регулярный осмотр прокладки системы слива;
- винтовая крышка на сливе не должна быть деформирована.
Заключение
Устройства удаляют магнитные и немагнитные шламы, все виды растворенных газов. Эффективность такого оборудования заметна в циркуляционных и подпиточных системах отопления. Сепараторы значительно продлевают срок службы котельных агрегатов, труб, радиаторов. Оборудование:
- Препятствует образованию воздушных пробок.
- Удлиняет межремонтные промежутки.
- Значительно снижает расходы на содержание системы отопления.
- Обладает незначительным гидросопротивлением.
- Может устанавливаться на любом трубопроводе.
Установка сепараторов воздуха и шлама не влияет на параметры отопительной системы. Устройства обладают незначительным гидравлическим сопротивлением и не требуют увеличения мощности циркуляционного насоса, масштабной реконструкции.
Модернизация отопления устройствами для дегазации и фильтрации дает хороший экономический и технический эффект.