Расчет радиаторов отопления в доме

Информация

При строительстве или ремонте жилого помещения важнейшим вопросом является его обогрев. Расчет эффективной системы отопления – ответственная задача для строителя-теплотехника. Однако, можно самостоятельно сделать расчет радиаторов отопления по площади помещения с помощью онлайн калькулятора. Необходимо только ввести известные данные в программу.

Функции калькулятора

Калькулятор для расчета радиаторов отопления на квадратный метр или по мощности секций является онлайн программой и состоит из:

  • блока окон «Вид радиатора»;
  • десяти строк ввода данных;
  • блока окон «Тип подключения»;
  • четырех строк с выводом готовых расчетов.

Программа произведет расчет количества секций радиаторов отопления; тепловых потерь помещения; удельных теплопотерь помещения; количества тепла, выделяемого одной секцией. Всю полученную информацию можно сохранить в файле PDF или вывести на печать.

Принцип работы на калькуляторе

Для получения готовых расчетов следуйте нижеуказанному алгоритму:

Выберете необходимый вид радиатора. В строке ниже автоматически появится мощность одной секции выбранного вида радиатора, в ваттах. В строках 2-4 укажите размеры комнаты: длину, ширину, высоту в метрах. Выберете качество остекления. Выберете площадь остекления (равна отношению площади окна к площади помещения), в %. Укажите степень утепления. Выберете климатическую зону – регион проживания. Укажите количество внешних углов и стен комнаты. Выберете вариант помещения, которое находится над комнатой. Укажите температуру теплоносителя, в ℃

Это очень важно, например центральное отопление дает 70-80 градусов, а котел на твердом топливе если есть дома тёплый пол настраивают на 50-60 Выберете планируемый тип подключения

После этого появится следующая информация:

  • Количество секций, в штуках.
  • Тепловые потери помещения, в ваттах.
  • Удельные теплопотери помещения, в Вт/м2.
  • Количество тепла, выделяемого 1 секцией, в ваттах.

Полезная информация

Важнейшими техническими характеристиками различных моделей радиаторов отопления являются:

  • Мощность секций радиатора. Чем больше мощность радиатора, тем выше теплоотдача и эффективность отопительного прибора.
  • Рабочее давление радиатора. Высокий порог данного параметра позволяет выдерживать гидравлические удары и перепады давления в системе, увеличивает срок службы изделия.
  • Материал и вес радиатора. Вид материала (металла, сплава) напрямую влияет на прочность и долговечность отопительного прибора, его коррозионную стойкость. Вес изделия важен при монтаже, особенно, если устанавливать радиаторы будет один человек.

На рынке радиаторов отопления присутствуют четыре основных вида: стальные, чугунные, алюминиевые и биметаллические радиаторы.

Стальные радиаторы – имеют хорошую теплоотдачу и относительно невысокую стоимость. Однако, они не достаточно устойчивы к гидроударам и высокому давлению, подвержены коррозии. Различают панельные и трубчатые радиаторы из стали.

Чугунные радиаторы – самый популярный и долговечный вид радиаторов в России для централизованного отопления. Обладают отличной теплоотдачей, стойкостью к коррозии и гидроударам. В то же время, радиаторы из чугуна долго нагреваются и долго остывают; имеют большой вес, что является недостатком при монтаже одним специалистом.

Алюминиевые радиаторы – одни из самых популярных современных видов радиаторов. Изготавливают литые и экструзионные радиаторы из алюминия

Отличаются высокой теплоотдачей и небольшим весом, что важно при установке приборов. При этом, они чувствительны к гидроударам и перепадам давления в системе отопления, быстро нагреваются и быстро остывают

Биметаллические радиаторы – обладают относительно лучшими характеристиками среди всех видов радиаторов

Изготавливаются из двух материалов: внешней алюминиевой оболочки и внутренних стальных или медных труб. Обладают высокой теплоотдачей и прочностью, хорошей стойкостью к коррозии и гидроударам, имеют сравнительно небольшой вес

Биметаллические радиаторы – обладают относительно лучшими характеристиками среди всех видов радиаторов. Изготавливаются из двух материалов: внешней алюминиевой оболочки и внутренних стальных или медных труб. Обладают высокой теплоотдачей и прочностью, хорошей стойкостью к коррозии и гидроударам, имеют сравнительно небольшой вес.

Справка

Радиатор отопления – отопительный прибор, конструктивно состоящий из отдельных элементов трубчатого или вытянутого вида – секций, с внутренними каналами, по которым циркулирует теплоноситель, как правило, вода. Тепло от радиатора отопления отводится конвекцией, излучением и теплопроводностью.

Как рассчитать количество секций радиатора отопления

Чтобы теплоотдача и нагревательная эффективность была должного уровня, при расчете размера радиаторов нужно учесть нормативы их установки, а отнюдь не опираться на размеры оконных проемов, под которыми они устанавливаются.

На теплоотдачу влияет не ее размер, а мощность каждой отдельной секции, которые собраны в один радиатор. Поэтому лучшим вариантом будет разместить несколько небольших батарей, распределив их по комнате, нежели одну большую. Это можно объяснить тем, что тепло будет поступать в помещение из разных точек и равномерно прогревать его.

Каждое отдельное помещение имеет свою площадь и объем, от этих параметров и будет зависеть расчет количества секций, устанавливаемых в нем.

Расчет на основании площади помещения

Чтобы правильно рассчитать это количество на определенную комнату, нужно знать некоторые правила:

Узнать нужную мощность для обогрева помещения можно, умножив на 100 Вт размер его площади (в квадратных метрах), при этом:

  • На 20% увеличивают мощность радиатора в том случае, если две стены помещения выходят на улицу, и в нем находится одно окно — это может быть торцевая комната.
  • На 30% придется увеличить мощность, если комната имеет те же характеристики, как в предыдущем случае, но в ней устроено два окна.
  • Если же окно или окна комнаты выходят на северо-восток или север, а значит, в ней бывает минимальное количество солнечного света, мощность нужно увеличить еще на 10%.
  • Устанавливаемый радиатор в нишу под окном, имеет сниженную теплоотдачу, в этом случае придется увеличить мощность еще на 5%.

Ниша снизит энергоотдачу радиатора на 5 %

Если радиатор закрывается экраном в эстетических целях, то снижается теплоотдача на 15%, и ее также нужно восполнить, увеличив мощность на эту величину.

Экраны на радиаторах — это красиво, но они заберут до 15% мощности

Удельная мощность секции радиатора обязательно указывается в паспорте, который производитель прилагает к изделию.

Зная эти требования, можно рассчитать необходимое количество секций, разделив полученное суммарное значение требуемой тепловой мощности с учетом всех указанных компенсирующих поправок, на удельную теплоотдачу одной секции батареи.

Полученный результат расчетов округляется до целого числа, но только в большую сторону. Допустим, получилось восемь секций. И тут, возвращаясь к вышесказанному, нужно отметить, что для лучшего обогрева и распределения тепла, радиатор можно разделить на две части, по четыре секции каждая, которые устанавливают в разных местах помещения.

Каждое помещение просчитывается отдельно

Нужно отметить, что такие расчеты подходят для определения количества секций для помещений, оснащенных центральным отоплением, теплоноситель в котором имеет температуру не больше 70 градусов.

Этот расчет считается достаточно точным, но можно произвести расчет и по-другому.

Расчет количества секций в радиаторах, исходя из объема помещения

Стандартом считается соотношение тепловой мощности в 41 Вт на 1 куб. метр объема помещения, при условии нахождения в нем одной двери, окна и внешней стены.

Чтобы результат был виден наглядно, для примера можно рассчитать нужное количество батарей для комнаты площадью 16 кв. м.и потолком, высотой 2,5 метра:

16 × 2,5= 40 куб.м.

Далее нужно найти значение тепловой мощности, это делается следующим образом

41 × 40=1640 Вт.

 Зная теплоотдачу одной секции (ее указывают в паспорте), можно без труда определить количество батарей. Например, теплоотдача равна 170 Вт, и идет следующий расчет:

 1640 / 170 = 9,6.

После округления получается цифра 10 — это и будет нужное количество секций отопительных элементов на комнату.

Существуют также некоторые особенности:

  • Если комната соединяется с соседним помещением проемом, не имеющим двери, то необходимо считать общую площадь двух комнат, только тогда будет выявлена точное количество батарей для эффективности отопления.
  • Если теплоноситель имеет температуру ниже 70 градусов, количество секций в батареи придется пропорционально увеличить.
  • При установленных в комнате стеклопакетах, значительно снижаются тепловые потери, поэтому и количество секций в каждом радиаторе может быть меньше.
  • Если в помещениях установлены старые чугунные батареи, которые вполне справлялись с созданием нужного микроклимата, но есть планы поменять их на какие-то современные, то посчитать, сколько их понадобится, будет очень просто.Одна чугунная секция имеет постоянную теплоотдачу в 150 Вт. Поэтому количество установленных чугунных секций нужно умножить на 150, а полученное число делится на теплоотдачу, указанную на секции новых батарей.

Формула для точного расчета

Существует довольно непростая формула, по которой можно сделать точный расчет мощности радиатора отопления:

Qт = 100 Вт/м2 × S(помещения)м2 × q1 × q2 × q3 × q4 × q5 × q6× q7, где

q1 – тип остекления: обычное остекление – 1,27; двойное остекление – 1; тройное – 0,85.

q2 – изоляция стен: плохая – 1,27; стена в 2 кирпича – 1; современная – 0,85.

q3 – соотношение площадей оконных проемов к полу: 40% – 1,2; 30% – 1,1; 20% – 0,9; 10% – 0,8.

q4 – наружная температура (минимальная): -35°C – 1,5; -25°C – 1,3; -20°C – 1,1; -15° C – 0,9; -10C° – 0,7.

q5 – число наружных стен: четыре – 1,4; три – 1,3; угловая (две) – 1,2; одна – 1,1.

q6 – тип помещения, располагаемого над расчетным: холодное чердачное – 1; отапливаемое чердачное – 0,9; обогреваемое жилое – 0,8.

q7 – высота помещений: 4,5м – 1,2; 4м – 1,15; 3,5м – 1,1; 3м – 1,05; 2,5м – 1,3.

Произведем расчет радиаторов отопления по площади:

Помещение в 25 м 2 с двумя двухстворчатыми оконными проемами с тройным стеклопакетом, высотой 3 м, ограждающими конструкциями в 2 кирпича, над помещением расположен холодный чердак. Минимальная температура воздуха в зимний период времени — +20°C.

Qт = 100Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05

В результате получаем 2356,20 Вт. Данное число разделим на 150 Вт. Итак, для нашего помещения потребуется 16 секций.

Стандартная высота

Говоря о стандартной высоте, имеют в виду межосевое расстояние 500 мм. Именно такие присоединительные размеры были у всем известной чугунной «гармошки» советских времен. А так как срок службы у них большой, то до сих пор эти батареи стоят в сетях отопления. Только сейчас их меняют на новые. Причем часто систему не хотят переделывать, вот и ищут отопительные приборы такого же размера. Что хорошо: они есть почти в любой группе.

Чугунные

Из чугуна сегодня делают не только «гармошку», хотя и она есть, и пользуется успехом. Есть еще с межосевым расстоянием 500 мм радиаторы в стиле ретро, выполненные в современном стиле:

  • «Гармошка» называется МС-140, МС-110, МС-90 и МС-85. В этих модификациях отличается глубина: 140, 110, 90 и 85 мм соответственно. Разная получается и ширина. Причем она у разных производителей одной и той же модели отличается. Так МС-140 Минского завода имеет ширину 108 мм, а Брянского и Новосибирского — 93 мм.
  • Чугунные радиаторы в стиле ретро с межосевым расстоянием 500 мм внешний вид и габариты иметь будут абсолютно разные. Скажем, модель Modern 500. Секции с ножками размеры 645*100*45 мм, без ножек 572*100*45 мм, тепловая мощность 93 Вт. А другая DERBY M 500 имеет габариты 660*174*63 мм и теплоотдачу 118 Вт (где габариты обозначаются так высота*глубина*ширина).
  • Чугунные батареи нового образца тоже имеют приличный разброс параметров. Турецкие Demrad Ridem 3/500 — 572*98,2*60 мм, Demrad Ridem 4/500 — 572*134*60 мм. Чешские Viadrus Style имеют следующие габариты высота 580 мм, ширина — 60 мм, глубина не указывается из-за нелинейной ее формы (вверху уже, внизу шире).

Алюминиевые

Размеры алюминиевых радиаторов более стандартизованы. Тут даже можно говорить о средних величинах. При межосевом расстоянии 500 мм средняя высота секции — 570-585 мм. Практически стандартная ширина — 80 мм.  По глубине есть варианты. Есть практически плоские: радиаторы российского производства «Термал» имеют глубину всего  52 мм. Это самые плоские алюминиевые батареи. У всех других она 80-100 мм.

Биметаллические

Тут ситуация еще более стандартная. Плоских радиаторов в этой категории не нашлось. В среднем габариты такие: ширина 80-87 мм, глубина 80-95 мм, высота 565-575 мм.

Самый низкий радиатор у «Глобал» Gl-200/80/D имеет высоту 200 мм

Стальные

Стальные панельные радиаторы редко выпускаются с межосевым расстоянием 500 мм. Но все-таки, есть и такие. Например, кампания Kermi специально под замену сделала такие подсоединительные размеры: есть они в линейке Plan-K и Profil -K. Есть радиаторы стандартного размера и у российского производителя «Конрад»: модель РСВ-1.

Трубчатые радиаторы радуют обилием моделей и размеров. Тут довольно легко найти требуемые размеры. Есть у российского производителя КЗТО, есть у европейцев. В этой категории больше оперируют общей высотой  — монтажной, так как многие предпочитают нижнее подключение.

Этапы расчета

Рассчитать параметры отопления дома необходимо в несколько этапов:

  • расчет теплопотерь дома;
  • подбор температурного режима;
  • подбор отопительных радиаторов по мощности;
  • гидравлический расчет системы;
  • выбор котла.

Таблица поможет вам понять, какой мощности радиатор нужен для вашего помещения.

Расчет теплопотерь

Теплотехническая часть расчета выполняется на базе следующих исходных данных:

  • удельная теплопроводность всех материалов, используемых при строительстве частного дома;
  • геометрические размеры всех элементов здания.

Тепловая нагрузка на отопительную систему в данном случае определяется по формуле: Мк = 1,2 х Тп, где

Тп — суммарные теплопотери постройки;

Мк — мощность котла;

1,2 — коэффициент запаса (20%).

При индивидуальной застройке расчет отопления можно произвести по упрощенной методике: суммарную площадь помещений (включая коридоры и прочие нежилые помещения) умножить на удельную климатическую мощность, и полученное произведение разделить на 10.

Значение удельной климатической мощности зависит от места строительства и равняется:

  • для центральных районов России — 1,2 — 1,5 кВт;
  • для юга страны — 0,7 — 0,9 кВт;
  • для севера — 1,5 — 2,0 кВт.

Упрощенная методика позволяет рассчитать отопление, не прибегая к дорогостоящей помощи проектных организаций.

Температурный режим и подбор радиаторов

Режим определяется исходя из температуры теплоносителя (чаще всего им является вода) на выходе из отопительного котла, воды, возвращенной в котел, а также температуры воздуха внутри помещений.

Оптимальным режимом, согласно европейским нормам, является соотношение 75/65/20.

Для подбора отопительных радиаторов до их монтажа следует предварительно рассчитать объем каждого помещения. Для каждого региона нашей страны установлено необходимое количество тепловой энергии на один кубометр помещения. Например, для европейской части страны этот показатель равен 40 Вт.

Для определения количества тепла для конкретного помещения, надо ее удельную величину умножить на кубатуру и полученный результат увеличить на 20% (умножить на 1,2). На основании полученной цифры рассчитывается необходимое количество отопительных приборов. Производитель указывает их мощность.

К примеру, каждое ребро стандартного алюминиевого радиатора имеет мощность 150 Вт (при температуре теплоносителя 70°С). Чтобы определить нужное количество радиаторов, надо величину необходимой тепловой энергии разделить на мощность одного отопительного элемента.

Гидравлический расчет

Для гидравлического расчета существуют специальные программы.

Одним из затратных этапов строительства является монтаж трубопровода. Гидравлический расчет системы отопления частного дома нужен для определения диаметров труб, объема расширительного бака и правильного подбора циркуляционного насоса. Результатом гидравлического расчета являются следующие параметры:

  • Расход теплоносителя в целом;
  • Потери напора теплового носителя в системе;
  • Потери напора от насоса (котла) до каждого отопительного прибора.

Как определить расход теплоносителя? Для этого необходимо перемножить его удельную теплоемкость (для воды этот показатель равен 4,19 кДж/кг*град.С) и разность температур на выходе и входе, затем суммарную мощность системы отопления разделить на полученный результат.

Диаметр трубы подбирается исходя из следующего условия: скорость воды в трубопроводе не должна превышать 1,5 м/с. В противном случае система будет шуметь. Но есть и ограничение нижнего предела скорости — 0,25 м/с. Монтаж трубопровода требует оценки данных параметров.

Если этим условием пренебречь, то может произойти завоздушивание труб. При правильно подобранных сечениях для функционирования системы отопления бывает достаточно циркуляционного насоса, встроенного в котел.

Потери напора для каждого участка рассчитываются как произведение удельной потери на трение (указывается производителем труб) и длины участка трубопровода. В заводских характеристиках они также указываются для каждого фитинга.

Выбор котла и немного экономики

Котел выбирается в зависимости от степени доступности того или иного вида топлива. Если к дому подведен газ, нет смысла приобретать твердотопливный или электрический. Если нужна организация горячего водоснабжения, то котел выбирают не по мощности отопления: в таких случаях выбирают монтаж двухконтурных устройств мощностью не менее 23 кВт. При меньшей производительности они обеспечат лишь одну точку водоразбора.

Точные подсчеты: сколько коэффициентов применяется

В отличие от предыдущих методов, принимает во внимание все детали. Формула выглядит следующим образом:. Q = 100 * S * G * I * R * T * N * A * H, где

Q = 100 * S * G * I * R * T * N * A * H, где

  • Q — общие теплозатраты помещения.
  • 100 Вт/м2— базовый коэффициент расчёта мощности.
  • S — площадь обогреваемой комнаты.
  • Прочие значения описаны ниже более подробно.

Наиболее важны 7 показателей, учтённых в формуле.

Коэффициент G — остекление помещения. Его принимают равным 1,25 для комнат с одиночными стеклопакетами, 1,0 с двойными и 0,8 с тройными.

I — показатель утепления стен. Малоэффективный материал характеризуется коэффициентом 1,27.

Если утепление хорошее (двойной слой кирпича или качественная теплоизоляция), значение падает до единицы. Для более устойчивых материалов показатель составит 0,82.

R — коэффициент, который отвечает за отношение площади оконных проёмов к поверхности пола. Среднее значение — 0,3, то есть площадь окон составляет 30% от пола. В этом случае R = 1. За каждый процент число соответственно изменяют на 0,01. Например, для 25% — 0,95, а для 32% — 1,02. Эта величина вариативнее остальных и имеет ограничение только снизу. Минимальный коэффициент — 0,7. Хотя площадь окон редко больше поверхности пола, это возможно, поэтому максимальный показатель отсутствует.

T — средняя температура в холодное время года. Максимальное значение составляет −10 °C, в этом случае коэффициент принимают равным 0,7. За каждый градус вниз его увеличивают на 0,04 вплоть до −25 °C, затем на 0,02 до −35 °C и, наконец, на 0,01 за каждый следующий градус.

Характерные значения T (коэффициент к температуре):

  • 1,5 — −35 °C;
  • 1,3 — −25 °C;
  • 1,1 — −20 °C;
  • 0,9 — −15 °C;
  • 0,7 — −10 °C.

N — количество внешних стен помещения. Если таковых нет, величину принимают равной единице. За каждую стену, соприкасающуюся с улицей, коэффициент увеличивают на 0,1.

И также влияние оказывает комната сверху. Неотапливаемый чердак или крыша выступает в качестве внешней стены.

Отапливаемое помещение напротив, уменьшает значение на одну десятую. Если сверху другая квартира или жилой этаж частного дома, коэффициент уменьшают на 0,2. Угловая комната имеет не менее двух внешних стен, но оно требует на 5% больше теплоты. Поэтому показатель дополнительно увеличивают на 0,05.

A — тип помещения. Для жилых помещений коэффициент составляет 1,0. Комнаты с дополнительными источниками тепла, например, кухни, требуют на 20% меньше обогрева. Санузел, в частности ванная, обычно требует на 10% больше мощности от батарей. Соответственно, для этих случаев значения составят 0,8 и 1,1.

H выступает крайним по списку, но не по значимости элементом. Это высота отапливаемой комнаты. Коэффициент принимают равным единице при высоте потолка 2,5 м. За каждые 10 см значение изменяют на 0,01. Например, для 2,7 м будет 1,02, а для 3 м — 1,05.

Фото 2. Расчет количества секций радиатора в зависимости от их мощности, площади помещения и высоты потолков.

Данный метод расчёта учитывает семь факторов, способных определить количество секций батареи, необходимое для обогрева. Для получения итогового числа рассчитанную величину тепловой потери делят на паспортную мощность одной части устройства. Итоговое значение округляют строго вверх.

Выполним расчёт помещения из примера выше, но произвольно учтём все возможные факторы:

100 * 15 * 1,0 (G) * 1,0 (I) * 0,9 (R) * 1,1 (T) * 1,25 (N, угловое) * 1,0 (A, жилое) * 1,05 (H, 3 м) = 1 949,06 ватт.

1 949,06 / 140 = 13,92, соответственно понадобится 14 секций.

Этот метод вычисления наиболее точен, но позволяет создать качественную систему отопления. Она соблюдает важный фактор: обеспечивает помещение одновременно необходимым и достаточным количеством теплоты.

Помещения со стандартной высотой потолков

Расчет числа секций радиаторов отопления для типового дома ведется исходя из площади комнат. Площадь комнаты в доме типовой застройки вычисляют, умножив длину комнаты на ее ширину. Для обогрева 1 квадратного метра требуется 100 Вт мощности отопительного прибора, и чтобы вычислить общую мощность, необходимо умножить полученную площадь на 100 Вт. Полученное значение означает общую мощность отопительного прибора. В документации на радиатор обычно указана тепловая мощность одной секции. Чтобы определить количество секций, нужно разделить общую мощность на это значение и округлить результат в большую сторону.

Комната с шириной 3,5 метра и длиной 4 метра, с обычной высотой потолков. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций.

  1. Определяем площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м 2 .
  2. Находим общую мощность отопительных приборов 14·100 = 1400 Вт.
  3. Находим количество секций: 1400/160 = 8,75. Округляем в сторону большего значения и получаем 9 секций.

Также можно воспользоваться таблицей:

Таблица для расчета количества радиаторов на М2

Для комнат, расположенных с торца здания, расчетное количество радиаторов необходимо увеличить на 20%..

Помещения с высотой потолков более 3 метров

Расчет количества секций отопительных приборов для комнат с высотой потолков более трех метров ведется от объема помещения. Объем – это площадь, умноженная на высоту потолков. Для обогрева 1 кубического метра помещения требуется 40 Вт тепловой мощности отопительного прибора, и общую его мощность вычисляют, умножая объем комнаты на 40 Вт. Для определения количества секций это значение необходимо разделить на мощность одной секции по паспорту.

Комната с шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 м. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций радиаторов отопления.

  1. Находим площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м 2 .
  2. Находим объем комнаты, умножив площадь на высоту потолков: 14·3,5 = 49 м 3 .
  3. Находим общую мощность радиатора отопления: 49·40 = 1960 Вт.
  4. Находим количество секций: 1960/160 = 12,25. Округляем в большую сторону и получаем 13 секций.

Также можно воспользоваться таблицей:

Как и в предыдущем случае, для угловой комнаты этот показатель нужно умножить на 1,2. Также необходимо увеличить количество секций в случае, если помещение имеет один из следующих факторов:

  • Находится в панельном или плохо утепленном доме;
  • Находится на первом или последнем этаже;
  • Имеет больше одного окна;
  • Расположена рядом с неотапливаемыми помещениями.

В этом случае полученное значение необходимо умножить на коэффициент 1,1 за каждый из факторов.

Угловая комната с шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 м. Расположена в панельном доме, на первом этаже, имеет два окна. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций радиаторов отопления.

  1. Находим площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м 2 .
  2. Находим объем комнаты, умножив площадь на высоту потолков: 14·3,5 = 49 м 3 .
  3. Находим общую мощность радиатора отопления: 49·40 = 1960 Вт.
  4. Находим количество секций: 1960/160 = 12,25. Округляем в большую сторону и получаем 13 секций.
  5. Умножаем полученное количество на коэффициенты:

Угловая комната – коэффициент 1,2;

Панельный дом – коэффициент 1,1;

Два окна – коэффициент 1,1;

Первый этаж – коэффициент 1,1.

Таким образом, получаем: 13·1,2·1,1·1,1·1,1 = 20,76 секций. Округляем их до большего целого числа – 21 секция радиаторов отопления.

При расчетах следует иметь в виду, что различные типы радиаторов отопления имеют разную тепловую мощность. При выборе количества секций радиатора отопления необходимо использовать именно те значения, которые соответствуют выбранному типу батарей .

Для того чтобы теплоотдача от радиаторов была максимальной, необходимо устанавливать их в соответствии с рекомендациями производителя, соблюдая все оговоренные в паспорте расстояния. Это способствует лучшему распределению конвективных потоков и уменьшает потери тепла.

  • Расход дизельного котла отопления
  • Биметаллические радиаторы отопления
  • Как сделать расчет тепла на отопление дома
  • Расчет арматуры для фундамента

Расчет по площади

Расчет радиаторов отопления на квадратный метр уже был чуть затронут. Но он подходит не всегда. Это максимально простой и быстрый способ подсчета. Не рекомендуется его использовать, если потолок не соответствует 2,40 – 2,60 м. Учитывается также норма, согласно которой 1м² достаточно 100 Вт.

Пример расчета количества секций радиаторов по площади помещения

Допустим, площадь спальни — 24м². Рассчитывается мощность умножением площади на 100 Вт. Выходит 2400 Вт либо 2,4 кВт.

После этого следует вычисление количества частей. Последнее число делится на теплоотдачу секции. Допустим, изготовитель указал 185 Вт. Получается 12,97. Округляя, выясняется, что для спальни необходимо 13 штук.

Расчет радиатора отопления по площади является нежелательным, поскольку пропускает ряд важных моментов. А если дом обладает балконом, то дополнительно стоит добавить 20%. В случае необходимости скрытия любого вида радиатора прибавляется 15%.

Подробный расчет с учетом особенностей помещения

Загородный дома зачастую обладают сложностями, где требуется более тщательный подход. С квартирами такое случается реже. По сути, этот метод лучше использовать всегда, потому как именно здесь раскрывается наибольшее количество нюансов.

Итак, потребуется следующая формула: КТ = 100 × S × К1 × К2 × К3 × К4 × К5 × К6 × К7 × К8 × К9.

  • КТ – необходимое тепло;
  • S – площадь комнаты;
  • К с числом – коэффициент.

Как рассчитать теплопотери

Алюминий лучший проводник тепла. Чтобы подобрать корректный объем радиатора отопления нужно, в первую очередь, учесть любые теплопотери.

K1 – внешняя стена. Большее количество этих стен навлекает большую теплопотерю. Если она одна, то K1 составит 1,0. Две – 1,2. Три – 1,3. Четыре – 1,4.

К2 – проникновение солнечных лучей. Больше всего страдают восточная и северная стороны, поскольку в этих случаях Солнце задерживает свой свет короткий промежуток времени. K2 тогда будет равен 1,1. Западная с южной таких проблем не испытывают.

Оконные проемы

К3 – выбранные конструкции. Еще один фактор теплопотерь. В данном случае учитывается 3 разные ситуации:

  1. Двойное остекление деревянной рамы, К3 равен 1,27;
  2. Однокамерный стеклопакет, коэффициент не учитывается (равен 1);
  3. Двойной стеклопакет, К3 = 0,

К4 – площадь окон. Это также влияет. Здесь расчет сложнее. Площадь окна делится на площадь комнаты. Пример пяти возможных случаев:

ОтношениеКоэффициент
Менее 0,10,8
0,11/0,2 = 0,550,9
0,21/0,3 = 0,71,0
0,31/0,4 = 0,7751,1
0,41/0,5 = 0,821,2

Стены и кровельное покрытие

К5 – утепление стен. Термоизоляция стен напрямую влияет на степень теплопотерь. Можно разделить на 3 уровня:

  1. Утепление отсутствует. К5 = 1,27;
  2. Средний – утепляются другим материалом либо имеется кладка из 2 кирпичей. Коэффициент — 1,0;
  3. Высокий – K5 = 0,85.

К6 – высота. Стандартом является 100 Вт/ м². Если высота выше 2,7м, он меняется:

Высота (м)Коэффициент
2,8 – 31,05
3,1 – 3,51,1
3,6 – 41,15
4,1 и далее1,2

К7 – верхнее помещение. То, что располагается наверху, также влияет на сохранение тепла. Например, что-либо неутепленное или неотапливаемое дает К7 — 1,0. Утепленная кровля или чердак снижает его — 0,9. Ну а расположение над комнатой отапливаемого помещения равняет коэффициент 0,8.

Погодные условия

Климат (К8) тоже многое решает. Его ни в коем случае нельзя не учитывать. В основном используются средние температуры местности в самую холодную десятидневку января.

ТемператураКоэффициент
От -35 °C1,5
От -25 до -35°C1,3
-20°C1,1
-15°C0,9
 -10°C0,7

Зависимость от режима системы отопления

Последний и, пожалуй, один из наиболее важных факторов. Существует множество вариаций подключения, и каждая из них так или иначе влияет на теплоотдачу. Подача и обратка также играет свою роль.

  1. Диагональное. Если соотношение подача-обратка идет сверху вниз, то K9 = 1,0. В противоположном случае — 1,25;
  2. Одностороннее. Снизу вверх – 1,28. Сверху вниз – 1,03. Если и подача, и обратка располагает внизу, то K9 = 1,28;
  3. Двустороннее нижнее – 1,13.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий