Солнечный коллектор для дома, бассейна
Солнечный коллектор — это аппарат, в котором энергия солнечных лучей преобразуется в тепловую энергию теплоносителя. Теплоноситель переносит тепло от солнечного коллектора к нагревателям систем горячего водоснабжения и отопления. В качестве теплоносителя используют воду или не замерзающие жидкости.
Солнечный коллектор может иметь разную конструкцию. Существуют три принципиальных схемы устройства солнечного коллектора.
Плоский солнечный коллектор
Солнечный плоский коллектор представляет собой металлическую пластину — абсорбер, которая поглощает падающее на неё солнечное излучение. К пластине прикреплены медные трубки, по которым течет теплоноситель. Пластину абсорбера покрывают слоем никеля, черной меди или другим материалом с высоким коэффициентом поглощения солнечных лучей, но с низким коэффициентом тепловых излучения. Такое покрытие называют селективным.
Некоторые производители выпускают адсорберы из двух сложенных вместе металлических листов. В листах выдавлены канавки, из которых при соединении листов формируются трубки коллектора.
Солнечные лучи нагревает абсорбер, от него тепло передается теплоносителю, температура которого увеличивается.
Абсорбер с трубками устанавливают в теплоизолированный плоский корпус. Сверху корпус коллектора закрывают стеклом. Для улучшения теплоизоляции обычно устанавливают стеклопакет с двойным или тройным остеклением. Стекло должно выдерживать удары града.
Чтобы остекление и поверхность адсорбера не запотевали, в корпусе коллектора оставляют отверстия для вентиляции.
Пластина абсорбера в плоском коллекторе со стеклопакетом может нагреваться до 190 оС.
Панель солнечного водонагревателя с параллельным расположением труб
В плоском солнечном коллекторе трубы, по которым циркулирует теплоноситель, обычно располагают вертикально. Применяют две схемы разводки труб — параллельную и змейкой.
Параллельная схема расположения труб имеет маленькое гидравлическое сопротивление. Коллекторы с параллельными трубами применяют в схемах подогрева воды с естественной циркуляцией теплоносителя.
Панель солнечного водонагревателя с расположением труб змейкой
Укладка труб змейкой позволяет получить чуть больший тепловой эффект, но при этом резко увеличивается гидравлическое сопротивление системы.
Трубчатый вакуумный солнечный коллектор
Солнечный трубчатый вакуумный коллектор устанавливают на южном скате крыши Солнечный вакуумный трубчатый коллектор может состоять из нескольких десятков стеклянных труб, в которых создан вакуум. Внутри вакуумных труб находятся трубки с теплоносителем.
На нижнюю часть поверхности труб нанесено зеркальное покрытие, фокусирующее солнечные лучи. А верхняя часть труб покрыта селективным слоем, который пропускает солнечные лучи внутрь, но задерживает отраженное тепловое излучение изнутри стеклянной трубы.
Наличие вакуума значительно уменьшает тепловые потери, а зеркальное и селективное покрытия еще больше увеличивают эффективность коллектора.
Солнечный коллектор с тепловыми трубками
Солнечный коллектор с тепловыми трубками внешне похож на вакуумный трубчатый, показанный на рисунке выше. Отличия находятся внутри стеклянных вакуумных труб.
В каждой стеклянной трубе коллектора имеется другая, герметично закрытая со всех сторон трубка с легко испаряющейся жидкостью — тепловая трубка. Верхний конец тепловой трубки является частью теплообменника, в котором циркулирует теплоноситель контура солнечного коллектора.
При нагреве солнечными лучами жидкость в тепловой трубке испаряется. Пары поднимаются вверх и конденсируются на поверхности трубки, прикрепленной верхним концом к теплообменнику. Процесс конденсации сопровождается передачей тепла теплоносителю.
Конденсат в тепловой трубке стекает вниз, снова нагревается, испаряется — процесс повторяется и идет непрерывно.
В солнечном коллекторе с тепловыми трубками каждая стеклянная вакуумная труба может быть легко отсоединена и, при необходимости, заменена на новую.
Можно ли оптимизировать солнечные панели для работы зимой?
Зимой оптимальный угол наклона к горизонту как солнечных батарей, так и солнечных коллекторов будет больше, из-за того, что Солнце зимой более низко над горизонтом. Для того, чтобы получать максимальное количество энергии и зимой, нужно менять угол наклона солнечных батарей или коллекторов. В нашем ассортименте есть специальные монтажные конструкции для солнечных батарей, которые позволяют менять угол наклона в пределах 15-30 или 30-60 градусов. Еще больше энергии можно получить при помощи трекеров, которые следят за ходом Солнца в течение дня. Однако, большинство систем установлены с фиксированным углом наклона (особенно это относится к солнечным коллекторам, т.к. у них сложнее менять угол наклона из-за трубопроводов). Значения углов наклона для максимальной выработки энергии в различные сезоны года и в среднем за год рассматривается в статьях Угол наклона и направление и Натурные испытания оптимального угла установки СБ.
Влияние снега на работу солнечных батарей
Проблемы, которые может причинить снег солнечным батареям, обычно минимальны
Однако, нужно обратить внимание на следующие моменты, если в вашем регионе снежные зимы и у вас на крыше установлены солнечные батареи:
- Все солнечные панели рассчитаны выдерживать определенный вес, и снеговая нагрузка обычно гораздо меньше максимально допустимой. Все солнечные панели тестируются под давлением на производстве, чтобы быть уверенным в их сроке службе и качестве. Посмотрите на характеристики солнечной панели, обычно в спецификации указывается максимальный вес, который может выдержать солнечная панель.
- Если снег закрывает солнечные панели, они не могут производить электричество — но для решения этой проблемы достаточно почистить солнечную батарею специальным оборудованием. Солнечным панелям нужен солнечный свет, чтобы производить электроэнергию. В большинстве случаев солнечные панели устанавливаются под определенным углом, который обеспечивает естественный сход снега с солнечных панелей. Вы можете ускорить этот процесс при помощи ручной очистки снега специальными щетками, которые не повреждают и не царапают солнечные панели.
- Морозная солнечная погода повышает выработку энергии солнечными батареями. Пока светит солнце на панели, они вырабатывают электроэнергию, зимой даже лучше, чем летом. Это значит, за 1 час солнечной погоды ваши солнечные панели зимой выработают больше энергии, чем за тот же час, но летом. Общее количество энергии, конечно же, будет меньше, потому что зимой день намного короче, чем летом, и солнечных дней меньше.
Можно ли надеяться на солнечные батареи зимой?
К сожалению, солнечные батареи и коллекторы не смогут обеспечить вас достаточным количеством энергии в зимнее время. Но некоторые системы работают на удивление эффективно и зимой.
Не надо надеяться на то, что солнечные батареи или коллекторы обеспечат ваши потребности в горячей воде или отоплении, но они помогут существенно сэкономить вам на счетах за электричество. Настолько, что ваша система окупится менее, чем за 10 лет. А если вы не подключены к электросетям и используете генератор для получения электричества, то фотоэлектрическая система окупится за срок от нескольких месяцев до 2-3 лет в зависимости от стоимости топлива и ваших затрат на капитальный ремонт или замену топливного генератора.
Даже с учетом того, что зимой на большей части России приход солнечной радиации снижается, вложения в солнечную энергосистему продолжает оставаться доходным. Более того, есть регионы, где приход солнечной радиации зимой даже больше, чем летом (например, Дальний Восток). В любом случае, солнечные батареи позволяют экономить на платежах за электроэнергию круглый год.
Эта статья прочитана 22176 раз(а)!
Солнечные панели из монокристаллов
Характерной особенностью монокристаллических солнечных панелей является однородный цвет фотоэлементов, создающий точно такой же внешний вид у всей конструкции. Цветовая гамма определяется размерами зерен выращенного монокристалла. Выращивание кремниевых слитков осуществляется из природного кремния, после чего кристаллическая решетка материала приобретает необходимую структуру и частоту.
Монокристаллические солнечные батареи считаются наиболее эффективными и применяются на различных объектах. Они имеют свои плюсы и минусы, которые следует учитывать при выборе той или иной конструкции.
Среди положительных качеств можно отметить следующие:
- Высокая эффективность изделий, благодаря высокому качеству структуры материала. Это позволяет довести коэффициент полезного действия до 17-22%.
- Возможность уменьшения размеров солнечных панелей без потерь мощности по сравнению с другими типами батарей с такими же техническими характеристиками. Таким образом, чтобы получить электроэнергию в количестве 10 ватт, потребуется монокремниевая панель с меньшими размерами.
- Максимальный срок эксплуатации, превышающий этот показатель у других изделий. При условии соблюдения всех правил и норм, батарея прослужит не менее 25 лет.
Серьезным недостатком этих конструкций является их высокая стоимость. Для многих пользователей данный фактор имеет решающее значение при выборе изделия, несмотря на все положительные качества. Поэтому нередко выбираются более дешевые поликристаллические панели, хотя и не такие эффективные.
При незначительной загрязненности или недостаточном освещении, когда отдельные элементы перестают участвовать в процессе, наступает резкая потеря производительности всей системы. В связи с этим рекомендуется использовать инверторы, способные выровнять параметры цепи и ликвидировать последствия неравномерного освещения.
Виды солнечных панелей
Солнечные батареи функционируют долго, могут вырабатывать постоянный ток, даже если погода пасмурная. Вместе с тем появляется возможность предупредить возникновение скачков напряжения. Как результат, техника на объекте, подключенная к такому источнику электроэнергии, служит дольше, т. к. созданы более щадящие условия эксплуатации (исключается риск повышения, падения напряжения, отключение питания).
Модуль представляет собой панель, состоящую из нескольких преобразователей, объединенных между собой. Чтобы изменить характеристики солнечной батареи, добавляют такие конструкции. Но эффективность работы подобных устройств зависит не только от количества модулей, а еще и от того, насколько правильно была выполнена установка (учитывают углы наклона панелей, интенсивность солнечного освещения на участке). Модули представлены видами:
Монокристаллические. Производятся из чистого материала – монокристаллического кремния. Его отличает высокие показатели эффективности. Причем КПД солнечных элементов – около 22%, а панелей на их основе – не более 18%. Такие модули рекомендуется применять в местности, где уровень освещенности часто низкий.
Монокристаллическая солнечная панель
Поликристаллические. По стоимости они предпочтительнее, т. к. производятся из мультикристаллических пластин. Еще одна причина низкой цены – недостаточно высокая производительность. Рекомендуется применять такие модули, если в местности сравнительно одинаковый уровень освещенности в разное время, отсутствуют резкие перепады.
Поликристаллические солнечные панели
Аморфные. Другое название – тонкопленочные солнечные батареи. Они отличаются универсальным действием (применяются на разных объектах, в различных целях). Могут устанавливаться там, где жаркое солнце внезапно сменяется облачной погодой. Теоретически аморфные панели в будущем будут использоваться не только на крышах, но и на сумках, других бытовых изделиях. Минусом таких панелей является более низкая производительность, если сравнивать с поли-, монокристаллическими.
Тонкопленочные (аморфные) солнечные панели
Гетероструктурные. Считаются наиболее эффективными, их КПД достигает 25%. Панели вырабатывают электроэнергию при солнечной и пасмурной погоде. В России такую продукцию представляет марка «Хевел». Компания-производитель разрабатывает и внедряет собственную технологию производства гетероструктурных панелей.
Гетероструктурные солнечные панели
Основные элементы конструкции:
- аккумулятор, позволяющая устранить перепады напряжения, вызванные изменением освещенности панели, а еще одна накапливает энергию;
- инвертор – преобразователь тока (из постоянного в переменный);
- контроллер: обеспечивает стабильную работу модуля, т. к. контролирует все параметры (температуру, зарядное напряжение аккумулятора и др.).
В продаже встречаются готовые системы, а также отдельные элементы для сбора с учетом собственных потребностей.
Тепловая энергия для вашего дома: как сделать коллектор своими руками?
Для изготовления устройства в ход могут идти листы поликарбоната, медные или полипропиленовые трубы.
Самой универсальной конструкцией является разработка болгарского инженера Станислава Станилова. Основной принцип действия этого коллектора — это использование парникового эффекта. Накопитель представляет собой помещённый в теплоизолированную деревянную коробку трубчатый радиатор, сваренный их стальных труб. Для подведения и отведения воды используются водопроводные трубы диаметром 1 или ¾ дюйма.
Коробка теплоизолируется со всех сторон при помощи пенопласта, пенополистирола, минеральной или эковатой. Особенно тщательно изолируется дно, куда поверх изоляции кладётся лист оцинкованного кровельного железа, на который ставится сам радиатор. Он закрепляется в коробке стальными хомутами. Металлический лист и радиатор красятся чёрной матовой краской, а коробка со всех сторон, кроме стеклянной крышки, покрывается белой краской. Покровное стекло, через которое будет проходить к радиатору солнечный свет, хорошо герметизируется. Накопителем тепла может служить металлическая бочка, помещённая в дощатой или фанерной коробке, в полости которой заполняется эковатой, сухими опилками, керамзитом, песком.
Необходимые инструменты и материалы
Основной принцип действия такого коллектора — использование парникового эффекта
- стекло (например, 1700/750 мм);
- рама под стекло;
- оргалит для дна;
- доска сечением 120/25 мм;
- стальная полоса сечением 20/2,5 мм, длина 3 м;
- накладка-уголок;
- деревянный брусок сечением 50/30 мм;
- соединительная муфта;
- труба радиатора;
- приёмная труба радиатора ;
- хомуты для крепления;
- оцинкованное железо в качестве отражателя;
- теплоизолятор;
- бак на 200−300 литров.
Изготовление: пошаговые действия
Конструкция солнечного коллектора проста
- Из досок сколачивается короб, днище которого усиливается брусом.
- На дно укладывается теплоизоляция (пенопласт, пенополистирол, минеральная вата), поверх которой кладётся лист железа или жести.
- Сверху ставится радиатор и закрепляется хомутами из стальной полосы.
- Все соединения герметизируются, стыки и щели замазываются.
- Трубы радиатора и металлический лист выкрашиваются в чёрный цвет.
- Короб и бак для воды выкрашивается в серебристый цвет. Бак для воды помещается в теплоизолированный короб или бочку (между баком и стенами короба насыпается теплоизоляционный материал).
- Для создания постоянного небольшого давления приобретается аквакамера с поплавковым клапаном, как в бочке унитаза. Её можно приобрести в магазине сантехники.
- На чердаке дома, под крышей размещается аквакамера и накопитель воды (бак). Аквакамера помещена выше бака как минимум на 0,8 м.
- Коллектор размещается на крыше южной стороны дома под углом 45 к горизонту.
- Далее идёт соединение всей системы между собой трубами: полудюймовыми трубами монтируется высоконапорная часть системы от аквакамеры до водопроводного ввода. Дюймовыми трубами монтируются низконапорные части. Минимальное количество труб — 12 штук, но, в зависимости от расстояний между частями коллектора, понадобится 18−15 труб, но не менее 12.
- Чтобы избежать воздушных пробок, система заполняется водой с нижней части радиатора. Как только вся система наполнится водой, из дренажной трубки аквакамеры польётся вода.
- Открываем вентиль в трубе для заполнения бака.
- Вода начинает нагреваться сразу же. Тёплая вода поднимается вверх, вытесняя холодную, и та автоматически поступает в радиатор.
- Как только часть воды будет использована, поплавковый клапан в аквакамере сработает, и холодная вода снова поступит в нижнюю часть системы. Смешивания воды при этом не происходит.
В ночное время желательно перекрывать доступ воды в бак, чтобы не возникли теплопотери.
Пошаговая технология сборки солнечного коллектора
В первую очередь необходимо разрезать лист поликарбоната до необходимого размера. Я планировал сделать коллектор размером 1х2 метра и исходил из этого. Порядок работы следующий:
Сбоку от двух заглушек нужно проделать отверстия для сосков. Если у вас нет сверла подходящего диаметра, вы можете увеличить маленькое отверстие с помощью круглого напильника.
Такой же разрез необходимо проделать и в заглушках, чтобы пластиковая панель могла войти в них.
Трубка из АБС-пластика разрезается на отрезки по ширине листа
В моем случае это 1 метр.
Чтобы вставить заглушки с установленными на трубы переходниками, необходимо было просверлить отверстие полукруглой формы, как показано на фото.
Затем с помощью настольной циркулярной пилы я разрезал обе трубы так, чтобы получилось С-образное сечение.При этом следует обращать внимание на необходимое расположение и направление переходников ниппеля.
После того, как все элементы будут собраны, конструкция разбирается и собирается снова, используя силиконовый клей для герметизации всех стыков. Помимо герметизации стыков герметиком, рекомендую после примерки нанести немного силикона с внешней стороны на все швы.
Когда все подготовительные операции будут завершены, необходимо просушить все детали, чтобы убедиться в их совместимости и, при необходимости, внести изменения.
Чтобы герметик хорошо просох, собранную конструкцию нужно оставить на месте примерно на сутки, после чего можно проводить испытание на герметичность. Для этого трубы подключаются к входному и выходному адаптеру, одна из которых подключается к водопроводу. После того, как коллектор полностью заполнен водой, все стыки и соединения проверяются на герметичность. При обнаружении утечки вода сливается и после высыхания проблемный стык снова герметизируется.
Чтобы рассчитать производительность и эффективность резервуара, необходимо знать его объем. Для этого воду из коллектора необходимо слить в емкость. Например, моя приборная панель вмещает 7,2 литра (включая шланги).
Новое направление энергетического комплекса
На сегодняшний день человечество внедряет в практику и успешно развивает устройства, позволяющие ему добывать свет и тепло без использования угля, нефти и газа. В народном хозяйстве многих государств возникла новая подотрасль – солнечная энергетика. Это одно из направлений нетрадиционной энергетики. В ее основе лежит принцип непосредственного использования излучения Солнца.
Цель, которую преследует солнечная энергетика, – получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого – Солнце.
Особенности и устройство
Солнечный коллектор – это современная конструкция, которая способна накапливать солнечную энергию и превращать ее в источник тепла. Устройство изготавливают из металлических пластин, покрашенных в черный цвет и заключенных в корпус из стекла. Такое оборудование можно устанавливать для отопления дома, а также для обеспечения систем горячей водой.
Благодаря установке коллектора можно экономить от 30 до 60% энергоносителей, а это означает, что расходы на электричество и газ значительно снижаются и эксплуатация дома удешевляется. Подключенное в систему теплоснабжения устройство играет роль теплового носителя, который круглосуточно поддерживает температуру согласно санитарным и технологическим нормам.
Конструкция солнечного коллектора представлена в виде системы трубок, последовательно соединенных между собой и имеющих входную и выходную магистраль. По трубкам может проходить как воздушный поток, так и техническая вода. Во время циркуляции вещества наблюдается его переход из одного агрегатного состояния в другое, в результате чего происходит выделение тепла. То есть, принцип действия батареи заключается в накоплении энергии фотоэлементами, ее концентрации и передачи.
Помимо трубок, конструкция также имеет специальный бак, где хранится вода в нагретом состоянии. Чтобы жидкость не охлаждалась, бак дополнительно обшивают качественной теплоизоляцией. Кроме это, в емкость монтируют и дублирующий электронагреватель, который автоматически включается в зимний период или при пасмурной погоде. Корпус коллектора, как правило, изготавливают из стекла, так как использование полимерных материалов не рекомендуется. Они обладают высоким показателем теплового расширения, неустойчивы к лучам ультрафиолета, что может привести к разгерметизации корпуса.
В качестве теплоносителя обычно выбирают воду, но если планируется круглогодичная эксплуатация системы, то нужно до наступления холодов техническую жидкость заменять антифризом. Часто теплоносителем в коллекторах выступает и воздух, каналы для его перемещения делают из профлистов.
К главным преимуществам солнечных агрегатов можно отнести:
- возможность бесперебойного обогрева зданий круглый год;
- долгий срок эксплуатации, достигающий 30 лет;
- экономия энергоресурсов;
- возможность одновременного обогрева помещений, теплиц, пристроек и бассейнов;
- отсутствие отходов;
- быстрый монтаж;
- оптимизация под индивидуальные проекты.
Что же касается недостатков, то их немного:
- высокая стоимость установки;
- низкая эффективность работы устройства, обусловленная климатическими условиями и особенностями ландшафта;
- принудительная циркуляция воды.
Дополнительные расходы, связанные с эксплуатацией
Использование этого не подразумевает какого либо ухода или обслуживания, кроме как периодической чистки от загрязнения и снега зимой (если сам не оттает). Однако будут и некоторые попутные расходы:
Ремонт, все что можно поменять по гарантии, производитель без проблем заменить, важно покупать официального дилера и иметь гарантийные документы.
Электричество, его расходуется совсем немного на насос и контроллер. Для первого можно поставить всего 1 солнечную панель на 300 Вт и ее вполне будет достаточно (подойдет даже без аккумуляторная система).
Промывка змеевиков, ее нужно будет делать один раз в 5-7 несколько лет
Все зависит от качества воды (если она используется как теплоноситель).
Принцип работы
Коллектор используется для нагрева воды за счет солнечной энергии. Такой прибор можно установить возле летнего душа или на крыше частного дома.
Заводские модели состоят из внешней стеклянной панели и нижележащей системы трубопроводов. За трубами утеплитель. Стекло способствует созданию внутри помещения парникового эффекта.
Модели из поликарбоната ручной работы более просты — вода в них нагревается в ячейках самого листа. Горячая жидкость поступает в емкость, а холодная автоматически перетекает на ее место. В солнечную погоду такой коллектор позволяет нагреть воду, достаточную для купания нескольких человек.
Калькулятор солнечных батарей для расчета выработки электрической энергии и окупаемости
Данные по инсоляции предоставлены сервером NASA, история измерений ведется с 1984 года и является самой достоверной в мире информацией на сегодняшний день.
Стоимость солнечных батарей | Срок окупаемости солнечных батарей | Чистая прибыль за 20 лет |
---|---|---|
— | — | — |
Мы предоставляем и используем для расчетов данные солнечной инсоляции в любой точке земного шара. Точность местоположения составила 0,1 градус долготы и широты.
Что бы воспользоваться нашим калькулятором укажите местоположение вашей солнечной электростанции на Яндекс карте вручную или введите название населенного пункта в поле поиска.
Заполняем данные:
Из выпадающего списка выберете модель и количество солнечных батарей которые вы планируете использовать или уже используете. Если в предложенном списке нет необходимых вам солнечных батарей, выберете «У меня другая солнечная батарея»
Наш калькулятор автоматически рассчитает и покажет оптимальный угол наклона ( «Оптимум» ) для максимальной усредненной выработки в год, а так же оптимальный зимний и летний угол, которые будут полезны в случае использования вами поворотного механизма или эксплуатации электростанции в определенное время года ( например только летом, в этом случае вам стоит ориентироваться именно на угол «Лето»). Если по каким то причинам вы не хотите использовать предложенные системой оптимальные углы ( к примеру вы планируете монтировать батареи на кровлю своего дома, и угол предопределяется уже имеющейся конструкцией), есть возможность задать произвольный ( необходимый вам угол )
При изменении угла, данные по выработки будут пересчитаны автоматически.
При выборе солнечных батарей крайне важно правильно рассчитать величину мощности энергопотребления. Для этого в калькуляторе вам предложено указать электрические приборы которыми вы будете пользоваться
Укажите их количество, мощность, а так же время работы в течении суток. Если в предложенном нами перечне нет необходимого вам прибора, вы можете воспользоваться пунктом «Другой прибор».
Например для небольшого загородного дама выбираем:
- Электролампа — 3шт х 50Вт х 6ч/сут итого 0,9кВт ч/сут,
- Телевизор — 1шт х 150Вт х 4ч/сут итого 0,6кВт ч/сут,
- Холодильник — 1шт х 200Вт х 6ч/сут итого 1,2кВт ч/сут,
- Циркуляционный насос — 1шт х 50Вт х 21ч/сут итого 1,05 кВт ч/сут.
Современные модели ЖК телевизоров потребляют 100-200Вт. Холодильник работает не постоянно. Основным потребителем энергии в нем является компрессор, который включается, если требуется холод. В среднем холодильник работает около 6 ч/сут. Циркуляционный насос используется практически круглосуточно. Все эти данные позволяют вычислить необходимую мощность для энергопитания используемых вами приборов.
В нашем случае суммарное потребление в сутки составит 3,75 кВт ч/сут.
Теперь давайте подберем необходимое количество солнечных батарей для Краснодарского края:
Мы выбираем солнечные модули, мощность которых составляет 280Вт, далее выбираем угол наклона, предложенный в качестве оптимального программой, то есть 45 градусов.
Далее нам следует выбрать необходимое количество батарей.
Дойдя до трех модулей мы увидим, что сможем перекрыть энергопотребление наших приборов в период с апреля по сентябрь. Этого будет достаточно если эксплуатация дома происходит только в этот период ( то есть летнее время ). Для круглогодичной эксплуатации дома вам потребуется минимум 6 панелей мощностью 280 Вт каждая. При этом лучше будет взять 9 штук, чтобы не испытывать дефицита в пасмурные дни.
График выработки очень удобен для визуальной оценки и выбора оптимального числа солнечных панелей. Под ним предлагается информативная сводная таблица, в которой представлены данные о выработке солнечной электростанции и планируемой нагрузке.
Устройство панелей
Растущая в цене электроэнергия поневоле заставляет задуматься об экономии. И отличной альтернативой в данном случае считаются природные источники энергии. Оптимальным решение для частного дома является альтернативная электростанция – солнечная батарея.
Изначально может показаться, что вся система солнечной батареи слишком большая, а принцип ее работы невероятно сложен. И чтобы понять, как функционирует солнечная батарея в деле, необходимо детально рассмотреть ее конструкцию.
В действительности гелиосистема устроена довольно просто и состоит из четырех основных элементов.
- Солнечная батарея – по форме и размерам представляет собой прямоугольную панель с определенным количеством пластинок. В основу солнечной батареи входят полупроводниковые материалы. Миниатюрные преобразователи собираются в модули, а модули – в единую систему гелиоколлектора.
- Контроллер – выполняет функцию посредника между солнечным модулем и аккумулятором. Он необходим для отслеживания уровня заряда аккумулятора. Его роль крайне важна во всей цепи – контроллер не дает закипать или падать электрическому потенциалу, который необходим для стабильного функционирования всей системы.
- Инвертор – преобразует постоянный ток солнечного модуля в переменный 220-230 вольт. Гибридный сетевой инвертор может использовать для своей работы как постоянный, так и переменный ток. Но стоит учитывать, что для работы инвертора тоже необходима энергия, и его расход составляет порядка 30% потерь на преобразование. И в пасмурную погоду или в темное время суток вся энергия для работы будет расходоваться из аккумулятора. То есть если аккумулятор разрядится, то инвертор перестанет работать.
- Аккумулятор – преобразованная в электричество солнечная энергия не всегда используется в доме в полном объеме. Излишки могут накапливаться в аккумуляторе и использоваться в темное время суток и в пасмурную погоду.
Но перед тем как приступить к выбору и установке солнечной батареи на крыше, необходимо разобраться в принципах работы устройства, а также рассчитать рабочие узлы гелиосистемы.
Технические характеристики
Основным элементом каждой солнечной батареи является фотоэлектрический преобразователь.
В массовом производстве используется три типа элементов из кремния.
- Монокристаллические – искусственно выращенные кремниевые кристаллы нарезаются на тонкие пластины. В основу модуля входит очищенный чистый кремний. Поверхность больше похожа на пчелиные соты или небольшие ячейки, которые соединяются между собой в единую структуру. Готовые маленькие пластинки соединяются между собой сеткой из электроводов. В данном случае процесс производства более трудоемкий и энергозатратный, что отражается на конечной стоимости солнечной батареи. Но монокристаллические элементы обладают большей производительностью, а средний КПД составляет около 24%. Срок службы монокристаллических батарей больше, они прослужат в среднем около 30 лет.
- Поликристаллические – в основе кремниевый расплав. Такие модули считаются оптимальным решением для жилого частного дачного дома. Несколько кристаллов из кремния объединяются в один фотоэлемент. Поверхность поликристаллической солнечной батареи имеет неоднородную поверхность, из-за чего хуже поглощает свет. И КПД, соответственно, ниже, находится в пределах 20%. Срок службы поликристаллической панели составляет 20-25 лет. Они имеют характерное отличие – темно-синий цвет покрытия. Такие модули дешевле аналогов, что позволяет окупить всю систему примерно за 3 года.
- Тонкопленочные – имеют гибкую подложку, что позволяет монтировать батарею на любую поверхность с углами и изгибами. Тонкий слой полупроводников наносится методом напыления на поверхность батареи. Такие системы имеют очевидный недостаток – маленький КПД. Производительность в среднем составляет около 10%. То есть для обеспечения энергией дома потребуется в два раза больше тонкопленочных батарей, чем поликристаллических. И срок службы таких панелей меньше других аналогов – в среднем ресурс работы составляет около 20 лет.