Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | |||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей
Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала
Выбор плотности утеплителя
Прежде чем решить, какую выбрать плотность теплоизоляции, необходимо определить, где она будет устанавливаться. Если планируется утепление стен, важную роль играет тип облицовки. Она определяет тип и плотность теплоизолятора. Так, для жилого дома рекомендуется использовать базальтовую вату, которая имеет низкую теплопроводность, высокую пожароустойчивость и экологичность.
Для облицовки сайдингом подойдет базальтовый теплоизолятор с показателями 40-90 кг/м³. Чем выше располагается теплоизоляция, тем больше должен быть показатель. Если поверхность будет оштукатуриваться, тогда нужно выбирать специальную теплоизоляцию для фасадных работ. Плотность должна составлять 140-160 кг/м³. При данных работах применяют специальные элементы, которые обладают высокими показателями паропроницаемости и прочности на отрыв. Для внутренних работ используют теплоизоляционный материал с низкой плотностью.
При кровельных работах выбор изоляции зависит от вида крыши. Если крыша скатная, выбирают утеплитель с показателями 30-45 кг/м³. Для утепления мансарды показатель должен быть не менее 35-40 кг/м³. Плоская кровля должна выдерживать большие нагрузки, которые оказывают снег, ветер и другие атмосферные явления. Поэтому в данном случае должна использоваться теплоизоляция с плотностью от 150 кг/м³, если используется минеральная вата. Для пенополистирола этот показатель должен быть не более 40 кг/м³.
Для изоляции пола от холода следует выбирать материал, у которого давление массы на единицу объема достаточно высокое. Однако если планируется укладка материала между лагами, можно использовать рыхлый утеплитель. Лаги принимают на себя всю нагрузку, и перед теплоизоляцией не ставится задача выдержать оказываемое давление.
В межкомнатных перегородках теплоизоляционный материал выполняет также и звукоизолирующую функцию. Поскольку данные перегородки не предназначены для защиты от низких температур, можно использовать теплоизоляцию средней плотности. Желательно, чтобы она была представлена в виде плит.
Типы минеральной ваты
1. Пространственная.
2. Гофрированная.
3. Вертикально слоистая.
4. Горизонтально слоистая.
К основному компоненту в составе материала относится базальт. Он выступает в качестве связующего вещества, в роли которого могут быть карбамидные смолы, битум, фенолоспирты, глина и крахмал.
В процессе изготовления минваты на основе пород расплавленных минеральных материалов получаются тонкие волокна в 1–3 микрона с толщиной в 50 мм. Для улучшения прочности, в расплавленные базальтовые волокна может добавляться расплав шихты или известняка. Вещества минваты отталкивают влагу, защищая тем самым теплоизоляционные качества.
Виды минеральной ваты
Минеральная вата имеет волокнистую структуру, при этом сама волокнистость может быть разной:
- Пространственная;
- Гофрированная;
- Горизонтально или вертикально слоистая.
Она задается технологическим путем и определяется исходным сырьем при производстве. В зависимости от него различают несколько разновидностей материала:
- Стеклянная вата – изготавливается из расплавленного стекла;
- Каменная вата – из расплава горных пород (базальт);
- Шлаковая вата – из расплава доменного шлака.
Производство каменной ваты основано на оплавлении горных пород при температуре 1500 С с последующим их преобразованием с помощью центрифуг и воздушных потоков в каменные волокна. Теплоизоляционные свойства минвата получает после добавления в хаотичные волокна водоотталкивающих добавок и пластификаторов. Окончательная полимеризация продукта позволяет выпускать производителям базальтовые плиты различного размера.
Для стекловаты исходным сырьем может служить песок, сода, бура, стеклобой и др. Все требуемые компоненты одновременно плавятся в центрифуге при температуре 1400 С. Под действием температуры расплавленное стекло вылетает, и мелкие частицы раздуваются подающимся паром и обрабатываются полимерными аэрозолями, за счет такого процесса образуются тончайшие нити. Специальные валки выравнивают эти нити, далее происходит полимеризация при температуре 250 С и раскрой материала.
Шлаковая вата не используется в качестве утеплителя в жилых домах именно из-за своей технологии изготовления, в ней присутствуют вредные химические примеси, так как исходным сырьем являются отходы металлургического производства.
1 Общие сведения об утеплении потолка
Теплоизоляция потолка необходима, прежде всего, для того, чтобы дома был комфорт и уют, приятная оптимальная температура и отсутствие сквозняков. И лишь второстепенной функцией утеплителей является визуальная эстетика (тому пример теплоизоляция Baswool).
Но проблема не только в сквозняках и погодными условиями за окном. Дело в том, что утеплители для потолка применяются и как устройство для сохранения имеющегося тепла дома, так как значительная его часть просачивается и «уходит» во внешнюю среду из дома на улицу.
И проблемой здесь, как уже было сказано, является то, какой материал для утепления дома лучше, и как на его приобретении сэкономить. Ведь утеплители для потолка представлены огромным ассортиментом, которые отличаются не только по эффективности и расценкам, но еще и по способу укладки.
Теплоизоляция для дома некоторых типов, например, может укладывать со стороны чердачного помещения. Но не каждое жилое здание имеет чердак, и тогда выходом будет купить утеплитель потолка с укладкой на внутренней стороне дома (например, на лоджии).
И, несмотря на то, что такое утепление потолка на лоджии пеноплексом и пенопластом достаточно сильно сократит итоговую высоту потолочной поверхности, данный способ наиболее оптимален при совмещении его с установкой подвесных или же натяжных декоративных конструкций для дома.
Выходит, что единогласно ответить на вопрос о том, какой все же утеплитель для потолка дома лучше, не представляется возможным, по причине того, что для каждой отдельно взятой ситуации подходит лишь индивидуальный утеплительный материал, а универсальных утеплителей попросту не существует.
Поэтому выбирать следует из наиболее популярных и востребованных типов теплоизоляции, которые представлены следующими вариантами:
- Минеральная вата (сокращенное название «минвата»);
- Пенопласт;
- Фольгированный синтетический пенополиэтилен;
- Полиплекс;
- Изоляционный керамзит и блоки из пеностекла.
Однако просто знать наименование тех или иных вариантов утепления потолка мало, куда важнее знать их технические нюансы, возможности и весомые преимущества перед другими аналогами.
Другие характеристики материала
Основные сравнительные характеристика каждого вида минеральной ваты:
Свойства стекловаты:
- Хорошая теплоизоляция;
- Невысокая прочность;
- Требуется дополнительная влагозащита;
- Эксплуатационный диапазон температур не позволяет использовать материал в суровых морозных условиях;
- Требуется использование дополнительных средств защиты при работах, т.к. мелкие частицы стекла попадают в дыхательные пути и царапают кожу.
- Используются в основном для утепления вентилируемых фасадов и изоляции системы трубопроводов.
Правила работы с материалом:
- Обязательное использование СИЗ: перчаток, очков и спецодежды;
- Запрещено укладывать в закрытых пространствах при наличии посторонних лиц.
Свойства базальтовой ваты:
- Отличная теплоизоляция;
- Минимальное влагопоглощение;
- Можно применять в любых климатических условия, благодаря широкому разбросу температур.
- Можно применять и в качестве противопожарного материала.
Свойства шлаковаты:
- Высокая гигроскопичность;
- Повышенная теплопроводность;
- Пожаронеустойчивость;
- Кислотность волокон, требуется дополнительная защита особенно для металлоконструкций, иначе со временем существует большая вероятность их повреждения и коррозии.
Долговечность таких изоляторов велика, она может достигать и 70 лет. Стоимость прямо связана с их плотностью, чем она выше, тем дороже, поэтому стеклянная вата более дешевая в сравнении со своим конкурентом.
Технология укладки своими руками
Правильная и неправильная укладка утеплителя
Перекрытия между этажами и чердаком изготавливают из несущих балок либо железобетонных плит. В первом варианте утеплитель обычно помещают в пространство между балками перекрытия либо на созданную обрешетку, а во втором – на поверхности плит.
Межбалочный способ монтажа используется, если толщина пластин либо рулонного слоя материала сравнима с размером самих балок. При невозможности выполнить это условие проводится комбинированная теплоизоляция.
Технология укладки в межстропильное пространство предполагает выполнение монтажных операций в таком порядке:
С помощью уровня определите, где располагаются нижние срезы стропил
При выявлении отклонений нарастите «углубления».
После того как проведено выравнивание, рулонный либо плитный утеплитель посредством ножа или ножовки нарежьте на заготовки необходимого размера, принимая во внимание расстояние между балками, и уложите в ниши. По ширине нарезанные плитки должны быть больше межстропильного расстояния приблизительно на 2–3 см
Если теплоизоляционный материал устанавливается в несколько слоев, заготовки второго и последующих слоев размещаются со смещением швов.
Уложенные плитки зафиксируйте снизу реечной обрешеткой и закройте слой теплоизолятора пароизоляцией, закрепив степлером.
Между кровлей и слоем гидроизоляции оставляют немного свободного пространства – около 2-3 сантиметров
Далее поверхность обшивают гипсокартоном либо фанерой. Завершают работы декоративной отделкой.
Утепление потолка над стропилами в частном доме своими руками минватой:
- На верхнем срезе стропил смонтируйте обрешетку из тонких реек, на которую затем уложите заготовки минерального утеплителя.
- На нижнем срезе набейте еще одну обрешетку из тех же реек, на которую с помощью степлера зафиксируйте пароизоляционную пленку.
- Сверху уложите и закрепите слой гидроизоляционного материала, а затем обшейте гипсокартоном или фанерой.
Аналогичным способом крепится минвата на железобетонные плиты. Так создают защиту от холода не только в частных домах, но и в других постройках.
Нормативы огнестойкости базальтовой ваты
В соответствии с межгосударственными стандартами ДСТУ Б В.2.7-97-2000 или его аналог ГОСТ 9573-2012 «Плиты из минеральной ваты на синтетическом связующем теплоизоляционные» базальтовая и минеральная вата относятся к классу негорючих строительных материалов НГ. Это означает, что этот утеплитель не только не может воспламениться, но и не поддерживает горение. Согласно международной классификации пожаробезопасности, предусматривающей евроклассы от А1 до F базальтовая вата относится к классу А1. Данная классификация является более полной и предусматривает такие характеристики, как рассеивание тепловой и лучистой энергии от источника огня, образовании горящих капель, дымообразование и другие показатели, возникающие из-за воздействия огня и воды (в результате пожаротушения) на материал.
В соответствии с нормативами минеральная и базальтовая вата обеспечивает максимальную защиту строительных конструкций зданий и сооружений. Она имеет максимальную температуру плавления и выдерживает до 1000°С, сохраняя при этом свои основные эксплуатационные характеристики, Что обеспечивает прочность несущих элементов зданий и сооружений довольно длительное время.
Результат 15 минутного воздействия открытого пламени на базальтовый утеплитель плотностью 50кг/м3 (слева) и 45кг/м3 (справа)
Плотность и ее влияние на свойства материала
Поскольку теплоизоляционный материал имеет различную плотность, выделяют несколько его видов:
Плотность влияет на такие показатели:
- теплопроводность;
- шумопоглощение;
- несущие способности;
- способ монтажа.
В любом теплоизоляционном материале воздух является главным теплоизолирующим компонентом. Он может быть в естественном или разряженном состоянии. Чем лучше он изолирован от окружающей среды и чем больше его содержится в утеплителе, тем выше теплопроводность материала.
Чем ниже воздухопроницаемость утеплителя, тем лучше он поглощает шум. Теплоизоляционный материал, который имеет повышенную плотность, будет лучше поглощать звук даже в том случае, если это не его главное предназначение. Но поскольку в некоторых утеплителях показатель плотности доходит до 150 кг/м³, оказывается большая нагрузка на конструкцию перекрытия. Поэтому лучше приобретать специализированный шумопоглощающий материал.
Слишком легкие утеплители нельзя использовать на тех участках, которые будут подвергаться высоким нагрузкам. При низких прочностных характеристиках материал будет деформироваться. Поэтому необходимо использовать термоизоляцию плотностью не менее 150 кг/м³.
Работать удобнее с более легким, т. е. менее плотным утеплителем. Однако выбор плотности зависит от расположения материала. Для укладки его между лагами кровли подходит легкая и мягкая термоизоляция, а для стен желательно выбирать более плотную, чтобы избежать ее сползания.
Рекомендации по толщине и плотности минеральной ваты
Различные виды жесткой минваты для фасадов выпускаются в виде рулонов или плит, имеющих размеры 60х120, 60х100 или 50х100 см, при этом толщина изделия зависит от его вида и основных свойств. Изготовители выпускают изделия с толщиной материала в пределах от 50 до 200 мм, при этом наибольшее распространение на практике получили плиты толщиной 10 см.
При выборе толщины и плотности плит и рулонов из жесткой минваты для фасада пользователи используют информацию, содержащуюся в технических характеристиках утеплителя, в то время как строители проводят сложные расчеты по весу жесткости, долговечности использования материала. Среди рекомендаций производителей относительно области применения жесткой минваты в зависимости от показателей ее удельного веса, следует выделить:
- использование утеплителя, имеющего плотность порядка 35 кг/м3, рекомендуется при выполнении внутренних работ и звукоизоляции на наклонных, вертикальных не нагруженных ограждающих конструкциях, кровлях скатного типа и отделки пола при использовании покрытия из ламината, массивных досок и др;
- применение утеплителя, имеющего параметры до 75 кг/м3 (П75) допустимо при отделке потолка, стен, пола и межкомнатных перегородок;
- использование минваты, имеющих удельный вес до 100 кг/м3 допускается при работе с воздушными зазорами вентилируемого типа и ограждающими конструкциями наружного типа;
- при обустройстве фасада и фасадных систем вентилируемого типа рекомендуется применение утеплителя, плотность минваты для фасада, которого составляет 80–130 кг/м3 (П125);
- применение утеплителя, удельный вес которых составляет до 150 кг/м3, рекомендуется при проведении обустройства нижнего слоя теплоизоляции в конструкциях из железобетона;
- при отделке «мокрого» фасада используется жесткая минвата, показатели плотности которой колеблются в пределах 130-160 кг/м3, прочность этого материала обеспечивает надежность при восприятии веса накладываемого раствора штукатурки;
- использование утеплителя, имеющего удельный вес до 175 кг/м3 (П175), практикуется при выполнении основного слоя теплоизоляции для конструкций из бетона;
- применение минваты, имеющей повышенную жесткость (ППЖ200) и плотность до 200 кг/м3, рекомендуется при выполнении верхнего слоя покрытий при выполнении теплоизоляции полов под стяжку.
Негорючая минвата: в каких формах выпускается
Теплоизоляторы из мин. ваты, которые не поддаются возгоранию, доступны в нескольких формах выпуска с хорошими свойствами. Сюда можно отнести:
- мягкие;
- полужесткие;
- жёсткие.
Мягкие плиты из минеральной ваты не поддаются возгоранию, имеют средние плотностные показатели, не очень большой показатель теплопроводимости. Подойдут для применения в конструкциях, не предполагающих большие нагрузки.
Полужесткие плиты из мин. ваты также не поддаются возгоранию, владеют плотностью вдвое превышающей плотность мягких плит, подходят для теплоизоляции вертикальных конструкций.
Жёсткие плиты также, как и предыдущие варианты не поддаются возгоранию, владеют самыми большими показателями плотности. Применяются для утепления конструкций разного типа, весьма популярны для изолирования систем кровли без стяжки из бетона.
Плиты минераловатные из категории негорючих считаются довольно востребованным теплоизолятором. Следом за ними следуют акустические маты также со способностью сопротивляться огню. Основным отличием плит от матов считается структура — прошитые специализированной нитью волокна, образующие собой полотнище, подобное стеганому одеялу. Толщина и длина матов отличаются в зависимости от марки. Положительным качеством матов считается слой защиты из фольги или сетки.
Как плиты, так и маты из категории негорючих ценны для теплоизоляции огнеопасных конструкций. Это могут быть деревянные дома, веранды, бани и др. Благодаря теплоизоляторам из мин. ваты с температурой плавления от 600 градусов Цельсия, возникает возможность обезопасить сооружения и конструкции от повреждения огнём, сделать больше показатели звукопоглощения и сбережения тепла.
Минеральная вата: характеристики и свойства
Теплопроводность и особенности минеральной ваты
Теплопроводность — свойство предмета пропускать через себя тепло и отдавать его. У любого утеплителя есть своя теплопроводность, которая определяет качество материала, область ее использования.
Теплопроводность минеральной ваты зависит от марки и состава. В среднем показатели равны 0,034-0,05 Вт/м*К. Данные очень низкие, поэтому минеральная вата является прекрасным теплоизоляционным материалом.
Более рыхлая структура минваты имеет более низкий уровень теплопроводности, поэтому тепло лучше задерживается в воздушных «подушках».
У тяжелой минваты теплопроводность равна 0,48-0,55 Вт/м*К, а у легкой (с рыхлой структурой) теплопроводность составляет 0,035-0,047 Вт/м*К. Сравнить коэффициент теплопроводности минеральной ваты с различными видами утеплителей поможет таблица 1.
Название материала | Коэффициент теплопроводности, Вт/м*К |
Пенополиуретан | 0,025 |
Вспененный каучук | 0,03 |
Легкие пробковые листы | 0,035 |
Стекловолокно | 0,036 |
Пенопласт | 0,037 |
Пенополистирол | 0,04 |
Поролон | 0,04 |
Легкая минеральная вата | 0,039-0,047 |
Стекловата | 0,05 |
Хлопковая вата | 0,055 |
Чем ниже значение теплопроводности, тем лучше утеплитель. В сравнении с пенополистиролом и пенопластом, минеральная вата дает менее эффективные энергоемкие показатели. Но, если сравнить огнестойкость и вредность этих утеплителей, то минвата явно выигрывает.
Минеральная вата не горит и не содержит потенциально вредных веществ.
Одинаково сохраняют тепло:
- пенополистирол экструдированный (40 кг/м3) при толщине слоя 95 мм;
- минеральная вата (125 мг/м3) — 100 мм;
- ДСП (400 кг/м3) — 185 мм;
- дерево (500 кг/м3) — 205 мм.
Минеральная вата имеет низкий коэффициент теплопроводности, поэтому используется везде. Ее используют для утепления фасадов зданий, для внутреннего и наружного утепления.
Выбор минваты и расчет толщины утеплителя
Любое здание имеет свою норму теплосопротивления. Цифры зависят от климатической зоны и отличаются, исходя из региона.
У каждого утеплителя есть свой уровень теплопроводимости
Поэтому важно создать комфортные теплоизоляционные условия, которые сократят потребление энергии на отопление и охлаждение помещения
Если здание уже построено, расчеты нужно проводить, исходя из типа материала, его сечения, провести расчет теплопроводности, узнать цифры по теплоизоляции. Для домов, которые только строятся, больше возможностей для выбора стройматериалов, утеплителей и отделки.
Для расчетов толщины утеплителя нужно знать три цифры:
- региональные стандарты теплосопротивления зданий;
- коэффициент теплосопротивления стройматериала сооружения;
- коэффициент теплопроводности утеплителя.
Расчет проводите по формуле:
K = R/N,
где K – цифра теплосопротивления стены; R — толщина слоя утеплителя; N — коэффициент теплопроводности.
Эта формула поможет рассчитать теплосопротивление стены. И, на основе полученных данных, можно вычислить, какая нужна теплоизоляция по толщине. Полный расчет толщины утеплителя вы найдете в статье «Толщина утеплителя для стен».
Технические характеристики минеральной ваты как утеплителя
Каждый теплоизоляционный материал хорош по-своему. Минеральная вата в том числе.
Даже больше: она во многом лучше другим утеплителей, т.к. экологична, не вредит здоровью, проста в монтаже и долго сохраняет свои эксплуатационные свойства.
Для примера в таблице 2 сравним технические характеристики минеральной ваты и экструдированного пенополистирола.
Наименование характеристики | Минеральная вата | Экструдированный пенополистирол |
Прочность на сжатие при 10% линейной деформации, МПа | 37-190 (+/- 10%) | 28-53 (+/- 10%) |
Водопоглощение по объему за 24 часа | менее 0,4 | 0,2-0,4 |
Время самостоятельного горения, не более, c | не горючий материал | разгалаются ядовитые газы |
Пожарно-технические характеристики по СНиП 21-01-97 | НГ, Т2 | Г1, Д3, РП1 |
Диапазон рабочих температур, °С | -180 до +650°С При t ≥ 250°С связующее испаряется. Плавится при 1000°С | -50 до +75 °С При 200-250°С тепла разлагаются токсичные вещества |
Коэффициент паропроницаемости, мг/(м.ч. Па) | 0,31-0,032 | 0,007-0,012 |
Безопасность | + | – |
Тепловое сопротивление | 0,036-0,045 | 0,03-0,033 |
Звуконепроницаемость и ветрозащитное действие | + | + |
Влагостойкость | + | + |
Высокая стойкость к нагрузкам | – | + |
Сохранение стабильных размеров | – | + |
Долговечность | 50 лет (фактическая – 10-15 лет) | 50 лет (фактическая – более 20 лет) |
Удобство использования | + | + |
Трудновоспламеняемость | + | – |
Выводы и исследования
Негорючая минеральная вата по классу пожарной безопасности относится к группе НГ, хотя пределы устойчивости к огню утеплителей, изготовленных из разного сырья, разнятся. В производстве минерального теплоизолятора часто используются полимеры, служащие связующим веществом. Они представляют собой легковоспламеняемые формальдегидные смолы.
Органические добавки ухудшают огнестойкость материала, но степень их влияния на горючесть материала преувеличена. Содержание полимеров в минвате не превышает нескольких процентов, если утеплитель выпускает добросовестный производитель.
Меньшей способностью поддерживать горение обладает теплоизоляция, при производстве которой в качестве связующего вещества используются бентонитовые глины. Температура горения минеральной ваты в этом случае может составлять +1000°С. Огнестойкость шлаковаты ограничена +250°С, а стекловаты — +450°С.
Базальтовые утеплители являются самым пожаробезопасным материалом. Их преимущество перед другими минеральными теплоизоляторами подтверждено экспериментами, проведенными специалистами компании Rockwool. Методика испытаний была разработана на основе ГОСТ 30403-2012.
Горит ли каменная вата, можно проверить в домашних условиях. Неоднократные эксперименты, в которых плиты минеральной теплоизоляции пытались поджечь газосварочным оборудованием, показали ее высокую устойчивость к возгоранию.