Как работают гибкие солнечные батареи: особенности конструкции

Где и как применяют солнечную энергию?

Гибкие панели применяются в разных сферах. Прежде чем составлять проект энергообеспечения дома при помощи этих солнечных батарей, выясните, где они применяются и каковы особенности их использования в нашем климате.

Область применения солнечных батарей

Применение гибких солнечных батарей очень широкое. Они с успехом используются в электронике, электрификации зданий, автомобиле- и авиастроении, на космических объектах.

В строительстве такие панели используют для обеспечения жилых и промышленных зданий электричеством.

Солнечная энергия может быть единственным источником электричества, а может дублировать традиционную схему электроснабжения, чтобы на случай недостаточной эффективности в определенный период дом не остался обесточенным

Портативные зарядные устройства на основе гибких солнечных элементов доступны каждому и продаются повсеместно. Большие гибкие туристические панели для добычи электроэнергии в любом уголке Земного шара очень популярны среди путешественников.

Очень необычная, но практичная идея – использовать в качестве основы для гибких батарей дорожное полотно. Специальные элементы защищены от ударов и не боятся больших нагрузок.

Гибкие батареи хороши еще тем, что могут быть применены практически в любых ситуациях. Их можно без труда разместить на крыше автомобиля или корпусе яхты

Эта идея уже реализована. «Солнечная» дорога обеспечивает энергией окрестные деревни, при этом не занимая ни одного лишнего метра земли.

Особенности применения гибких аморфных панелей

Те, кто планирует начинать использование гибких солнечных панелей в качестве источника электроэнергии для своего дома, должны знать особенности их эксплуатации.

Галерея изображений
Фото из

Основа, на которую нанесены кремниевые кристаллы, определяет износостойкость, а вместе с ней и область использования гибкий солнечных батарей

Солнечные батареи, созданные на основе полимерной пленки, легки и удобны для переноски. На их базе сейчас выпускают переносные зарядные устройства для мобильной техники

Если на зарядное устройство не предполагается активное механическое и атмосферное воздействие, батарей на гибкой полимерной пленки с защитным ламинированием — лучшее решение

Наличие встроенного аккумулятора в переносных приборах, помещающихся в сумку, позволяет рационально собирать и хранить полученную энергию

Энергоэффективная вставка на рюкзаке

Портативное зарядное устройство

Эффективная зарядка на дачном участке

Наличие встроенного аккумулятора

Солнечные панели с гибкой металлической основой находят применение там, где к износостойкости мини-электростанций предъявляются повышенные требования:

Галерея изображений
Фото из

Любителям морских путешествий лучше отдать предпочтение гибким солнечным панелям на основе из металлической фольги

Также желательно, чтобы устройства были оснащены водоотталкивающей защитой

Ввиду того, что во время прогулок на катере может подняться порывистый ветер, способный сорвать легкое полимерное устройство, лучше приобрести солнечную батарею на гибком металлическом основании

Важно учесть, что наряду с повышенной износостойкостью у приборов на металлической основе есть недостаток: радиус гибки меньше, чем у полимерных

На металлический кузов автофургона лучше поставить солнечные батареи с гибкой металлической основой. Так кузову нанесен будет минимальный вред

Палуба морского или речного судна

Тент на прогулочном речном катере

Незначительный радиус гибки

Установка на металлический кузов

Прежде всего пользователей волнует вопрос, а что делать зимой, когда световой день короткий и электричества не хватит на функционирование всех приборов?

Да, в условиях пасмурной погоды и короткого светового дня производительность панелей снижается. Хорошо, когда есть альтернатива в виде возможности переключения на централизованное электроснабжение. Если ее нет, нужно запасаться аккумуляторами и заряжать их в те дни, когда погода благоприятная.

Интересная особенность солнечных батарей заключается в том, что при нагревании фотоэлемента его эффективность существенно снижается.

В летний зной панели раскаляются, но работают хуже. Зимой, в солнечный день фотоэлементы способны улавливать большее количество света и преобразовывать его в энергию

Число ясных дней в году зависит от региона. Разумеется, на юге использовать гибкие батареи рациональнее, поскольку солнце там светит дольше и чаще.

Так как в течение дня Земля меняет свое положение относительно Солнца, панели лучше располагать универсально – то есть с южной стороны под углом около 35-40 градусов. Такое положение будет актуальным как в утренние и вечерние часы, так и в полдень.

Виды солнечных батарей

В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.

I. Классификация по типу их устройства:

  1. 1. Гибкие;
  2. 2. Жёсткие.

II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:

1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью.

Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании.

Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;

2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;

3. Солнечные батареи, фотоэлемент которых выполнен из селена;

4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;

5. Из органических соединений;

6. Из арсенида галлия;

7. Из нескольких материалов одновременно.

Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.

Фотоэлементы, выполненные из кремния, отличаются высокой чувствительностью к нагреванию, компактностью, надежностью и высоким уровнем КПД (коэффициента полезного действия).

Другие материалы не получили широкого распространения в связи с большой стоимостью.

Характеристики кремниевых солнечных батарей

Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.

Монокристалл

Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем солнечные батареи имеют КПД выше и самую наибольшую стоимость на рынке таких устройств.

Преимущества монокристалла:

  1. Наивысший КПД — 17–25%.
  2. Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
  3. Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.

Недостатки:

  1. Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
  2. Высокая цена равна увеличенному сроку окупаемости.

Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.

Поликристалл

Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.

Положительные факты поликристалла:

  1. Коэффициент полезного действия 12–18%.
  2. При неблагоприятной погоде КПД лучше, чем у Mono–Si.
  3. Цена данного агрегата меньше, а сроки окупаемости намного ниже.
  4. Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
  5. Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.

Недостатки:

  1. КПД уменьшен до 12–18%.
  2. Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.

Аморфный кремний

Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.

Преимущества:

  1. Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
  2. Высокий коэффициент полезного действия при не совсем солнечной погоде.
  3. Возможность использования на гибких модулях.
  4. Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.

Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.

Гетероструктурные HJT солнечные элементы

Гетероструктурные HJT солнечные элементы в основе имеют обычные кристаллические элементы, покрытые дополнительными тонкопленочными слоями аморфного кремния на каждой стороне. Эти пленки формируют так называемые гетеропереходы, в дополнение к основному переходу в кристаллическом элементе. Известно, что разные типы переходов преобразуют разные участки спектра солнечного света  в электричество. За счет этого эффекта достигается повышение общего КПД преобразования солнечной энергии в гетероструктурном солнечном элементе. 

Сейчас HJT элементы на основе обычных солнечных элементов с токосъемными шинами имеют КПД 22-23%. Ожидается, что максимальный КПД может быть повышен до 26,5% за счет комбинации гетероструктуры с IBC технологией формирования токосъемных контактов (см. ниже). Конечно же, перечисленные выше технологии улучшения токосъема (half-cut, multibusbar, shingled) также позволяют повысить КПД гетероструктурных элементов. 

К преимуществам HJT технологии также относится малый температурный коэффициент. Они меньше нагреваются при работе и меньше теряют мощность при нагреве. Температурный коэффициент в лучших HJT элементах улучшен на 40% по сравнению с обычными поликристаллическими и монокристаллическими модулями. Для лучших HJT модулей температурный коэффициент мощности составляет 0.26%/°C (против 0.38% … 0.42% /°C для обычных модулей). Это приводит к тому, что в жаркий безветренный солнечный день HJT солнечные батареи могут вырабатывать дополнительно до 20% электроэнергии. 

Улучшенный температурный коэффициент позволяет получать больше энергии от HJT солнечной батареи

Примечание: температура солнечной панели и солнечных элементов также зависит от цвета крыши под ними, угла наклона и скорости ветра. Поэтому при монтаже модулей на темной крыше вплотную к поверхности без вентиляционного зазора для обдува ветром температура модулей может быть существенно выше, а общая выработка в жаркую погоду сильно снизиться. 

В России гетероструктурные элементы производит завод Хевел, они есть в нашем ассортименте.

Топ-10 Самых Эффективных Солнечных Панелей

В прошлом году наблюдался всплеск производителей, выпускающих более эффективные солнечные панели на основе высокопроизводительных гетеропереходов N-типа или ячеек HJT. Впервые КПД топ-6 панелей теперь выше 22%. Панели SunPower Maxeon по-прежнему лидируют, но ненадолго, так как новые панели Canadian Solar, Panasonic EverVolt H и REC Alpha Pure с ячейками HJT N-типа не отстают. Высокопроизводительные панели от SPIC и Meyer Burger, использующие элементы IBC, также сократили этот разрыв, а панели следующего поколения с полуразрезанными ячейками N-типа с несколькими шинами (MBB) от Jinko Solar, Trina Solar и JA Solar помогли увеличить количество панелей. КПД намного выше 21%.

От плоской формы к цилиндрической

Цилиндрические солнечные батареи впервые разработала небольшая американская компания с запоминающимся названием Solyndra (от слов «солнечный» и «цилиндр»). Свое достижение они представили в 2008 году и сразу же получили несколько крупных заказов от европейских и американских фирм. По их заверениям, эта цифра составляла более 1 млрд. $. До 2008 года солнечные элементы имели плоскую форму. Solyndra же предложила устанавливать в солнечные батареи элементы-цилиндры. Тонкий слой фотоэлемента наносится на поверхность стеклянной трубки, после чего она помещается в еще одну такую же трубку, но уже с электрическими контактами. В качестве полупроводников для элементов используют уже знакомые нам медь, галлий, селен и индий. Цилиндрические солнечные батареи за счет своей формы поглощают большее количество света, и, как следствие, имеют больший показатель производительности. Каждая панель состоит из 40 цилиндров и имеет размеры 1 на 2 метра.

Для увеличения поглощаемого света рекомендуют использовать цилиндрические батареи в сочетании с белым покрытием крыши. В таком случае, отраженные от крыши лучи будут проходить через цилиндры, чем и обеспечат еще плюс 20% поглощенной энергии

Еще одно важное достоинство батарей с элементами цилиндрической формы – это их устойчивость к сильному ветру. Они способны выдерживать порывы ветра скоростью до 200 км/ч. Это делает монтаж солнечных батарей более простым и дешевым

Это делает монтаж солнечных батарей более простым и дешевым.

Технология изготовления

Вначале следует спаять фотоэлементы между собой. Если вы купили элементы с металлическими выступами, то тогда можно просто спаять ушки батарей между собой. Делать это нужно очень внимательно и аккуратно. После пайки соединенные компоненты необходимо приклеить к подложке в верхней части панели. Это лучше сделать при помощи специального силиконового клея, который никак не препятствует проникновению солнечных лучей. Кроме того, он способствует нормальному теплообмену. Однако, не переусердствуйте с клеем, так как это может привести к повреждению батарей. Клеить нужно только центр клеток. Далее все элементы нужно соединить с проводом, который подается в одной из заранее предусмотренных вентиляционных отверстий. Для закрепления провода к солнечным элементам лучше использовать силиконовую замазку. Интересное: Солнечная панель своими руками.

На следующем этапе поверх панелей устанавливается оргстекло. Однако, до этого следует подключить диод Шоттки от чувствительных теплопроводящих компонентов. Этот диод послужит блокирующим устройством, которое защитит фотоэлементы при перепадах напряжения. Кроме того, диод Шоттки будет отключать питание системы при маленькой мощности электросети. Так аккумуляторы, заряжаемые от солнца, не будут разряжаться при прекращении питания. Когда диод будет подключен, можно ставить оргстекло и закреплять его винтами. Технология изготовления солнечных панелей является достаточно простой и понятной

Единственное, важно правильно соблюдать последовательность соединения, иначе вся система не будет работать

https://youtube.com/watch?v=3apKOZn-_B4

Как работает солнечная батарея

Принцип работы солнечной батареи основан на наличии полупроводника в виде двух пластин, соединенных друг с другом. Каждая пластина изготавливается из кремния с использованием дополнительных примесей. Благодаря этому пластины обладают своими уникальными свойствами. Первая из них имеет избыток валентных электронов, а вторая имеет недостаток этих электронов. Эти полупроводники получили название n и p. Если эти полупроводники соединить в единое целое, то можно получить PN-переход в месте контакта между ними. В то время, когда на батарею попадают прямые солнечные лучи, на обеих сторонах этого перехода начинают накапливаться положительные и отрицательные плавающие нагрузки. В результате генерируется напряжение и возникает магнитное поле. Если подсоединить к такому элементу провод, по нему потечет электричество.

Как подключить солнечную батарею

Как только вы изготовите солнечную панель, можно начинать заниматься ее подключением. Можно не подключать ее напрямую к сети, чтобы избежать потерь электроэнергии. То есть, желательно установить автономную систему с аккумуляторами. Они будут заряжаться от солнечных батарей каждый день и быстро разряжаться. При этом, глубина разрядки может быть довольно существенной. Поэтому, аккумуляторы могут быстро выйти из строя. Для того, чтобы этого не произошло, лучше оставить подключение к сети через гибридный батарейный инвертор. Это устройство будет отдавать фотоэлементам приоритет при распределении нагрузки. Инвертор не будет отдавать излишки электроэнергии в сеть, а будет передавать ее на аккумуляторы. Такой вариант является одним из наиболее оптимальных. Эта система состоит из гибридного инвертора, контроллера заряда солнечных панелей и аккумуляторов. Такой механизм сможет работать не только как основная, но и как резервная система электропитания.

Особенности гибких солнечных модулей и их применение

Гибкие солнечные панели (они же – «тонкопленочные») становятся все более востребованными в бытовой сфере. Если раньше их использовали главным образом на крупных гелиостанциях или в аэрокосмической отрасли, то сегодня они все чаще применяются и в повседневной жизни.

  • Гибкие панели встраивают в различные архитектурные элементы и рекламные сооружения, а также используют в качестве складных мобильных источников энергии.
  • Более того, тонкопленочные фотобатареи даже нашивают на одежду и снаряжение. К примеру, для туристов выпускают специальные модели походных рюкзаков, снабженных гибкими батареями.
  • А последние разработки в этой сфере позволили создать тонкопленочные модели, которые можно использовать и для тонировки стекол.
  • То есть при помощи «солнечной пленки» любое окно легко превратить в полноценный источник питания.
  • Проводились и другие интересные эксперименты. Например, по созданию так называемых «фотоштор».

Нашитые на ткань гибкие солнечные модули не только вырабатывают энергию, но и надежно защищают комнату от избытка солнечных лучей. Тем самым обеспечивается прохлада и комфортный микроклимат в помещении.

Что такое «гибкая солнечная панель»

По сути, такая панель представляет собой слой полупроводника, напыленный на тонкую гибкую подложку. Толщина современных готовых панелей минимальна (не более 1 мкм), а их производительность лишь немного уступает КПД привычных кристаллических образцов.

Ранее тонкопленочные батареи изготавливали лишь на основе аморфного кремния, но сейчас все больше используют кадмия теллуриды/сульфиды, диселениды медно-индиевые и медно-галлиевые, а также некоторые полимерные вещества. Для повышения энергоэффективности применяются и многослойные (многокаскадные) полупроводниковые структуры, в которых свет отражается и преобразуется несколько раз.

Что же касается отличительных свойств гибких гелиомодулей, то можно выделить следующие:

  • Гибкость структуры и возможность использования на криволинейных и цилиндрических поверхностях;
  • Сохранение производительности при облачной погоде, как следствие – высокая общая энерговыработка;
  • Особая эффективность в жарком климате;
  • Довольно высокая степень оптического поглощения солнечного спектра, благодаря чему энергия солнца «улавливается» более полно;
  • Эффективная работа в мощных гелиокомплексах. Именно поэтому изначально такие панели применяли в основном на крупных солнечных станциях.

Кроме того, производство гибких солнечных панелей обходится дешевле их кристаллических аналогов. Это означает, что и итоговая цена таких изделий также несколько ниже.

У тонкопленочных батарей есть только одна негативная особенность – более обширная (примерно в 2 раза) площадь поверхности по сравнению с кристаллическими вариантами той же мощности.

Особенности использования

Гибкие фотомодули применяют и в быту, и в промышленной сфере. Причем их особые рабочие свойства накладывают свои ограничения и на специфику использования.

В быту

Чаще всего солнечные батареи на гибких фотоэлементах используют при архитектурной отделке зданий и в малых архитектурных формах. Такие панели встраивают в крыши и окна, заключают в стеклянные триплексы и полимерные короба.

Кроме того, так как гибкие фотобатареи очень легкие, то именно их используют в тех случаях, когда критичную роль играет вес. Электросамолеты, электролодки и электромобили, аэростатные конструкции и т.д., — во всех этих случаях тонкие гелиопанели гораздо предпочтительнее и эффективнее кристаллических вариантов.

Также гибкие батареи применяют на солнечных станциях, то есть в случаях, когда не имеет значения их более обширная площадь. Особенно хорошо эти батареи зарекомендовали себя в регионах с пасмурной погодой или жарким климатом.

В космосе

Ведутся и активные разработки по использованию тонкопленочных панелей в космической отрасли. Так, на российском предприятии НПП «Квант» разрабатывается направление по созданию гибких фотопанелей для космических станций

Основное внимание при этом уделяется трехкаскадным батареям на базе аморфного кремния

Такие батареи отличаются гораздо более высокими (в 4-5 раз) энергомассовыми характеристиками по сравнению с кристаллическими аналогами (несмотря на несколько меньший КПД).

Кроме того, они гораздо более стойки к радиационному излучению, а их стоимость существенно ниже. Еще один весьма важный фактор – небольшой транспортный (стартовый) объем гибких модулей и возможность изготовления на их основе легко развертываемых конструкций.

Солнечные панели на основе кремния

Наибольшей популярностью пользуются элементы, основой которых является моно-кристаллический кремний. Производство осуществляется методом литья, а новые технологии дают возможность получать совершенно чистые кристаллы кремния. Твердение расплава происходит во взаимодействии с кристаллической затравкой.

В процессе охлаждения и застывания образуются цилиндрические монокристаллы, диаметр которых составляет от 13 до 20 см, а длина – 2 м. Стержни разрезаются на отдельные части. Толщина каждого кружка выдерживается в пределах 0,2-0,4 мм. Из этих кружочков образуются ячейки. Для одной панели их оптимальное количество составляет 36 единиц.

Наиболее качественные кристаллы позволяют увеличить КПД до 19%. В таких монокристаллах атомы сориентированы таким образом, что подвижность электронов заметно возрастает. Весь кремний пронизан металлической сеткой, выполняющей функцию электродов. Для установки панели предусмотрена алюминиевая рамка, после чего модуль закрывается противоударным защитным стеклом. Полученная поверхность бывает черного или темно синего цвета.

Монокристаллические кремниевые солнечные батареи отличаются надежностью и долговечностью. Расчетный срок эксплуатации составляет 50 лет. Отсутствие движущихся деталей существенно упрощает монтаж. Они используются в районах с большим количеством солнечных дней, где обычное энергоснабжение работает с перебоями. Высокая эффективность панелей определяется их высокой стоимостью. В большинстве случаев их использование экономически выгодно и целесообразно.

В более дешевых батареях используется мультикристаллический кремний, в состав которого входят различные монокристаллические решетки, собранные в случайном порядке. Срок эксплуатации таких устройств планируется не более 25 лет, а их КПД и стоимость гораздо ниже, чем у классических панелей.

Существует еще один вариант солнечных батарей, в которых использовались элементы поликристаллического кремния. Он также отличается низкой стоимостью, а его кристаллы находятся в агрегатном состоянии, обладают различной формой и ориентацией. В отличие от монокристаллов, они окрашены в собственный ярко синий цвет. Производство таких компонентов постоянно совершенствуется и в настоящее время их параметры лишь незначительно отличаются от лидирующих конструкций.

Производство поликристаллов осуществляется путем медленного охлаждения кремниевой субстанции. Процесс изготовления быстрый и дешевый, однако КПД таких панелей получается достаточно низким. Причина заключается в образовании внутренних поликристаллов, снижающих эффективность батарей.

Преимущества и недостатки

Им присущ ряд неоспоримых преимуществ:

Небольшой вес: это очень важное преимущество для туристов, так как тащить рюкзак им приходится на собственной спине. При длительных переходах даже лишние 100 граммов веса кажутся неподъемными

6-ваттная пленочная модель весит всего 284 грамма – а это на 106 граммов легче кристаллической солнечной батареи такого же номинала;
Надежность: производители гибких панелей предусмотрели особенности их эксплуатации, поэтому предприняли ряд мер, защищающих изделие от механических повреждений, воздействия влаги. Основная масса моделей обеспечена чехлами, способными стойко переносить высокие нагрузки. Небольшой вес панелей позволяет им без особых повреждений переносить падение с высоты. По свидетельству туристов, панель, упавшая на камни с десятиметровой высоты, остается работоспособной.
Эффективность: вопрос, что эффективнее – гибкие или твердые модули, непростой. Ведь КПД кристаллических батарей составляют от 18 до 20%, а пленочных – 12-15%. На первый взгляд, гибкие панели проигрывают. Но если пересчитать КПД на единицу веса, однозначно пленочные модули окажутся в выигрыше.

К недостаткам можно отнести следующее:

  • Размер: если сравнить два модуля – гибкий и твердый – одинаковой мощности, то, несомненно, первые проиграют. Площадь пленочной батареи мощностью 6 Вт составляет 1,5 кв. м, а кристаллического – 0,9 кв. м. Хотя проигрыш этот спорный – ведь гибкую панель можно свернуть, и тогда она займет места, по крайней мере, не больше кристаллической;
  • Цена: стоят тонкопленочные модули больше жестких, что вполне естественно – чем изделие удобнее в пользовании, тем оно дороже. Впрочем, здесь играет немаловажную роль и понятие «новинки». Со временем и гибкие модули станут вполне доступными для любого желающего их приобрести (как это случилось, к примеру, с мобильными телефонами).

Покупателю на заметку

На что смотреть при выборе

На рынке солнечных батарей гибкие панели уже представлены довольно широко. Каждая модель имеет свои особенности, и при выборе надо следует учитывать:

Обратите внимание на силу тока: для зарядки мобильных устройств в солнечную погоду достаточно 0,5 А;
Некоторые модели оснащены присосками для крепления к поверхности. Если вы хотите прикрепить модуль к крыше авто, ищите такой вариант

Для крепления на рюкзак подойдет любая модель, так во всех чехлах предусмотрены для этого небольшие отверстия;
Если вам продавец «гарантирует» КПД 25% — уходите: вам пытаются продать продукцию неизвестного происхождения. Последняя модель от известного производителя из Швейцарии имеет коэффициент полезного действия, равный 17,7%. Выше них пока еще никто не «прыгнул».

Гибридная панель

Большой интерес вызывает еще один вид солнечных модулей – гибридные солнечные панели. Они способны одновременно вырабатывать два вида энергии:

  1. Электрическую;
  2. Тепловую.

Гибридная солнечная панель представляет собой симбиоз теплового коллектора и фотоэлектрической панели. Ее краткое название – PVT-панель. Такая комбинация позволяет сократить в два раза установочную площадь при одновременном использовании фотоэлектрических модулей и солнечных коллекторов на одном здании.

Смотрим видео, гибридной модели:

https://youtube.com/watch?v=T_3Fq3YnxMk

Конструкция гибридной солнечной панели имеет неоспоримое преимущество – возможность отбора избыточного тепла от фотоэлемента за счет теплоносителя, который используется в тепловой части модуля. А ведь именно повышение температуры фотоэлемента приводит к снижению эффективности выработки электрической энергии.

Несмотря на ряд недостатков гибких и гибридных солнечных панелей, будущее, несомненно, за ними. По мере усовершенствования и снижения цены, они будут все больше вытеснять кристаллические модели и из промышленной сферы, и из бытовой.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий