Теплогенераторы для воздушного отопления
Теплогенераторы сегодня создают сильную конкуренцию классическим котлам отопления.
Теплогенераторы являются специальным оборудованием, которое используется для извлечения теплоносителя при сжигании горючего разных типов. По своему принципу, все такие агрегаты устроены идентично.
В основе находится камера сгорания, за счет которой происходит воздушное отопление помещений.
На нижней части камеры сгорания располагается кулер, задача которого всасывать холодный воздух с улицы или из самого здания и посылать его через камеру сгорания в здание за счет системы воздухоотводов.
Теплогенераторы на газу
Тепловые установки на газу наиболее широко распространены, поскольку газовые трассы сейчас разветвляются все более обширно, а значит, топливо для теплогенератора не нужно будет перевозить, складывать на хранение и загружать в агрегат.
Дополнительным преимуществом таких устройств является и тот факт, что газ содержит меньшее количество вредоносных элементов, чем другие виды топлива. КПД таких устройств не редко достигают 90%. Газовый теплогенератор может быть с закрытой или раскрытой топкой.
Вариант с закрытой топкой более безопасен, но стоит дороже, так как более технологичен.
Дизельные теплогенераторы
Такие устройства вторые по популярности и используются в основном там, где нет доступа к газовой трассе. Дизельные теплогенераторы оснащаются разными форсунками: распыляющими, порционными. Распыляющие форсунки подают топливо в камеру сгорания непрерывно, рассеивая его равномерно по всех камере, в то время как порционные форсунки многократно подают топливо небольшими порциями.
Теплогенераторы универсального типа
Такие генераторы универсального типа могут работать на дизельном топливе, проработанном автомобильном масле, керосине и даже на жирах.
По сравнению с дизельными теплогенераторами, эти устройства обладают несколько меньшей мощностью, но при этом широко используются для обогрева автомастерских и ряда других помещений.
Необходимо учитывать, что в теплогенераторах универсального типа в камере сгорания откладываются шлаки, поэтому они нуждаются в ежедневной чистке. По этой причине такие устройства продаются с двумя камерами сгорания, что позволяет обеспечить постоянную работу.
Вихревой теплогенератор
В таком теплогенераторе нагрев воды происходит благодаря синтезу и трению молекул воды. Эти агрегаты экологически чистые, простые в эксплуатации, пожаро-безопасные.
Теплогенераторы на твердом топливе
Они представляют собой своеобразный гибрид между теплогенератором и самой обыкновенной печью.
Горючим для таких устройств выступают высохшая древесина, прессованный торф, древесная стружка, жесткий антрацит и не только.
Топливный плюрализм
В середине 2010-х годов многие страны официально заявили — будущее за электромобилями. Они обещали сократить объемы производства машин с двигателями внутреннего сгорания (ДВС), предлагали льготы владельцам электрокаров и даже вводили ограничения на использование бензиновых и дизельных авто на отдельных улицах. Впрочем, большинство планов будут реализованы не раньше 2025 года. А пока автомобильная отрасль хоть и меняется, но не так стремительно, как прогнозировал Илон Маск и другие сторонники авто на электротяге.
Данные за первый квартал 2020 года показывают, что в большинстве стран Европы до сих пор преобладают автомобили на бензине и дизеле. Исключение — Норвегия, в которой доля электрокаров от общего числа новых машин уже превышает 50%. Альтернативные виды топлива в ЕС пока редкость — они занимают всего 1,9% рынка. При этом популярность автомобилей на газе и этаноле упала с апреля по июнь на 50%.
В российском топливном рейтинге также пока лидируют бензин и дизель: по данным «Автостата», менее 6% автовладельцев пользуется пропаном и метаном, а также другими видами топлива — в эту категорию попадают и электрокары.
Зеленая экономика
В чем плюсы и минусы электрокаров в России
А вот в Латинской Америке альтернативное топливо пользуется большим спросом. Например, в Бразилии машины на этаноле не уступают по популярности бензиновым авто. Интересно, что ставку на биотопливо из сахарного тростника государство сделало еще в 1970-е годы, впоследствии госпрограмму постоянно корректировали, учитывая колебания цен на бензин. Если он дешевел, цены на этанол тоже снижались. Также в 1990-е власти поддержали развитие FlexFuel-автомобилей, которые можно заправлять как смесью бензина и этанола, так и чистым бензином.
Пример Бразилии показывает — вектор развития топливного рынка можно менять, но для этого недостаточно одной госпрограммы или однократного введения льгот. Это подтверждают кейсы других стран, которые запускали инициативы в поддержку электрокаров, но со временем сворачивали проекты или ограничивали их применение.
Так, в конце 2019 года Tesla достигла порога в 200 тыс. проданных электромобилей на рынке США — после достижения этого лимита покупатели получать налоговые бонусы. Льготные периоды подходят к концу и в других странах: например, в Китае размер субсидий на покупку электрокаров с каждым годом. В 2020 году он уменьшится на 10%, а в 2022 году — уже на треть.
На тенденции в отдельных странах влияют не только инициативы правительства, но также доступность природных ресурсов, развитие инфраструктуры (наличие АЗС и станций подзарядки) и общий уровень благосостояния жителей. Из-за этой комбинации факторов сложно прогнозировать, какой вид топлива станет пользоваться наибольшим спросом в будущем — скорее всего, картина будет не однородной.
Футурология
Футуролог Кирилл Игнатьев — о перспективах электромобилей
Часть развитых стран перейдет на электромобили, часть сделает ставку на биотопливо, но многие продолжат пользоваться автомобилями с ДВС на бензине и дизеле, которые станут более экологичными. Но задача у всех общая — сократить количество выбросов CO2 и замедлить темпы глобального потепления. Разберемся, какие виды топлива укрепят свои позиции в будущем и почему электрокары — это не панацея.
Сборка модели на два выхода
Сделать вихревой кавитационный теплогенератор своими руками можно с электродвигателем мощностью около 5 кВт. Корпус для устройства необходимо подбирать чугунного типа. В данном случае минимальный диаметр выхода обязан составлять 4,5 см. Роторы для этой модели подходят только на два диска
При этом статор важно использовать ручной модификации. Устанавливается он в вихревом теплогенераторе над улиткой
Непосредственно диффузор целесообразнее использовать небольшой. Обточить его при желании можно с трубы. Прокладку под улитку лучше использовать толщиною около 2 мм. Однако в данной ситуации многое зависит от сальников. Устанавливать их надо сразу над центральной втулкой
Для того чтобы воздух быстро прогонялся, важно сделать дополнительную стойку. При этом крышка для устройства подбирается на резьбе
Строение нагревателя и принцип работы
Кавитационное отопление характеризуется образованием пузырьков из пара в рабочей жидкости. В результате такого действия давление постепенно снижается благодаря высокой скорости потока. Следует отметить, что необходимое парообразование задается специальным излучением лазерных импульсов либо акустикой, заданной определенными звуками. Воздушные области закрытого типа смешиваются с водяной массой, после чего поступают в зону большого давления, где вскрываются и излучают ожидаемую ударную волну.
Оборудование кавитационного типа отличается способом функционирования. Схематично оно выглядит так:
- Водяной поток перемещается по кавитатору, в котором с помощью циркуляционного насоса обеспечивается рабочее давление, поступающее в рабочую емкость.
- Далее в таких емкостях повышается скорость, соответственно, и давление жидкости посредством установленных по чертежам трубок.
- Потоки, достигая центральной части камеры, перемешиваются, в результате чего и образуется кавитация.
- В результате описанного процесса пузырьки пара не увеличиваются в размерах, отсутствует их взаимодействие с электродами.
- После этого вода перемещается в противоположную часть емкости и возвращается для совершения нового круга.
- Нагревание обеспечивается передвижением и расширением жидкости в месте выхода из сопла.
Из работы вихревой установки видно, что ее конструкция незамысловата и проста, но при этом обеспечивает быстрый и выгодный обогрев помещения.
Инструмент, необходимый для сборки агрегата
С нуля собрать такой агрегат самостоятельно невозможно, так как для его изготовления потребуется задействовать технологическое оборудование, которого у домашнего мастера просто нет. Поэтому своими руками обычно собирают лишь агрегат, в некотором роде повторяющий . Его называют прибором Потапова.
Однако даже для сборки этого устройства необходимо оборудование:
- Дрель и набор сверл для нее;
- Сварочный аппарат;
- Машинка для шлифовки;
- Ключи;
- Крепеж;
- Грунтовка и малярная кисть.
Кроме этого потребуется приобретение двигателя, работающего от сети в 220 В и неподвижная основа для установки на ней самого прибора.
Этапы изготовления генератора
Сборка устройства начинается с подключения к насосу, желательного напорного типа, патрубка смешивания. Его присоединяют, используя специальный фланец. В центре донышка патрубка выполняется отверстие, по которому будет выводиться горячая вода. Чтобы контролировать ее поток используется тормозящее приспособление. Оно находится перед донышком.
Но так как в системе циркулирует и холодная вода, то ее течение должно также регулироваться. Для этого используют дисковый выпрямитель. При остывании жидкости она направляется к горячему концу, где в специальном смесителе происходит ее смешивание с нагретым теплоносителем.
Далее переходят к сборке конструкции вихревого теплогенератора своими руками. Для этого использую шлифовальную машинку нарезают угольники из которых собирается основная конструкция. Как это сделать видно на расположенном ниже чертеже.
Собирать конструкцию можно двумя способами:
- Используя болты и гайки;
- При помощи сварочного аппарата.
В первом случае приготовьтесь к тому, что придется выполнить отверстия под крепеж. Для этого нужна дрель. В процессе сборки необходимо учитывать все размеры – это поможет получить агрегат с заданными параметрами.
Самый первый этап – это создание станины, на которой устанавливается двигатель. Ее собирают из железных уголков. Размеры конструкции зависят от размеров двигателя. Они могут отличаться и подбираются под конкретное устройство.
Чтобы закрепить двигатель на собранной станине потребуется еще один угольник. Он будет выполнять роль поперечины в конструкции
При выборе двигателя специалисты рекомендуют обращать внимание на его мощность. От этого параметра зависит количество нагреваемого теплоносителя. Смотрим видео, этапы сборки теплогенератора:
Смотрим видео, этапы сборки теплогенератора:
Последний этап сборки – это покраска рамы и подготовка отверстий для установки агрегата. Но прежде, чем приступать к монтажу насоса следует рассчитать его мощность. Иначе двигатель может не справиться с запуском установки.
После того, как все комплектующие подготовлены насос присоединяется к отверстию из которого поступает под давлением вода и агрегат готов к работе. Теперь, используя второй патрубок его подсоединяют к отопительной системе.
Подключение прибора к системе происходит следующим образом. Сначала его подсоединяют к отверстию, по которому поступает вода. Она при этом находится под давлением. Второй патрубок используется для непосредственного подсоединения к системе отопления. Чтобы изменять температуру теплоносителя за патрубком находится запирающее устройство. При его перекрытии температура в системе постепенно увеличивается.
Могут использоваться и дополнительные узлы. Однако стоимость такого оборудования достаточно высокая.
Смотрим видео, конструкция после изготовления:
Корпус будущего генератора можно выполнить сварным. А детали к нему по вашим чертежам выточит любой токарь. Обычно он имеет форму цилиндра, закрытого с обеих сторон. По сторонам корпуса выполняются сквозные отверстия. Они нужны для подсоединения агрегата к системе отопления. Внутри корпуса помещают жиклер.
Наружную крышку генератора обычно изготавливают из стали. Затем в ней выполняются отверстия под болты и центральное, к которому впоследствии приваривается штуцер для подачи жидкости.
На первый взгляд кажется, что ничего сложного в сборке теплогенератора своими руками на дровах нет. Но на самом деле эта задача не такая уже и легкая. Конечно, если не спешить и хорошо изучить вопрос, то справиться можно. Но при этом очень важна точность размеров выточенных деталей. И особого внимания требует изготовление ротора. Ведь в случае, если он будет выточен неправильно агрегат станет работать с высоким уровнем вибрации, что негативно скажется на всех деталях. Но большего всего в такой ситуации страдают подшипники. Они будут очень быстро разбиваться.
Только правильно собранный теплогенератор будет работать эффективно. При этом его КПД может достигать 93%. Поэтому специалисты советуют.
Самодельные теплогенераторы
Тем не менее, как демонстрация интересного физического процесса, сделанный своими руками теплогенератор имеет право на жизнь.
Наиболее проста в изготовлении «вихревая трубка», или статический теплогенератор.
Конструктивно наше сопло Лаваля будет выглядеть как металлический патрубок с трубной резьбой на концах, позволяющей при помощи резьбовых муфт соединить его с трубопроводом. Для изготовления патрубка понадобится токарный станок.
- Сама форма сопла, точнее, его выходной части, может отличаться по исполнению. Вариант «а» наиболее прост в изготовлении, а его характеристики можно варьировать изменением угла выходного конуса в пределах 12-30 градусов. Однако такой тип сопла обеспечивает минимальное сопротивление потоку жидкости, а, следовательно, и наименьшую кавитацию в потоке.
- Вариант «б» более сложен в изготовлении, но за счет максимального перепада давления на выходе сопла создаст и наибольшую турбулентность потока. Условия для возникновения кавитации в этом случае являются оптимальными.
- Вариант «в» — компромиссный по сложности изготовления и эффективности, поэтому стоит остановиться на нем.
Изготовив сопло, можно собрать экспериментальный контур, состоящий из электрического насоса, соединительных патрубков, непосредственно сопла и термометра, который мы используем для определения эффективности устройства. Для уменьшения влияния рассеивания тепла в окружающую среду патрубки лучше всего сделать короткими и замотать их теплоизоляционным материалом. Заполнив контур устройства водой и запомнив ее количество, включим насос ровно на час, чтобы по электросчетчику определить количество израсходованной электроэнергии.
Тепловую мощность самодельного теплогенератора можно определить по следующей формуле, известной по школьному курсу физики:
E=cm(T2-T1)
Где с — это удельная теплоемкость воды (4200 Дж/(кг*К)), m — ее масса, T2 — температура воды в конце работы насоса, Т1 — температура в начале. Полученную энергию, измеренную в джоулях. Сравнить ее с израсходованной электроэнергией можно, учитывая соотношение в 1000 Дж на 0.000277 киловатт-часов энергии. Иначе говоря, при стопроцентном КПД устройство, израсходовавшее 1 киловатт-час энергии, не сможет создать тепловой энергии больше 3600 килоджоулей.
ПРИМЕР: Наше устройство нагрело за час 1 литр воды с 10 до 60 градусов. Получаем тепловую энергию в 210 килоджоулей.
Посмотрите, что сообщают о таких устройствах производители
Принцип работы индукционного нагрева
В работе индукционного нагревателя используется энергия электромагнитного поля, которую нагреваемый объект поглощает и преобразует в тепловую. Для генерирования магнитного поля используется индуктор, т. е. многовитковая цилиндрическая катушка. Проходя через этот индуктор, переменный электрический ток создает вокруг катушки переменное магнитное поле.
Самодельный инвенторный нагреватель позволяет производить нагрев быстро и до очень высоких температур. С помощью таких устройств можно не только нагревать воду, но даже плавить различные металлы
Если внутрь индуктора или близ него разместить нагреваемый объект, его будет пронизывать поток вектора магнитной индукции, который постоянно меняется во времени. При этом возникает электрическое поле, линии которого располагаются перпендикулярно направлению магнитного потока и движутся по замкнутому кругу. Благодаря этим вихревым потокам электрическая энергия трансформируется в тепловую и объект нагревается.
Таким образом, электрическая энергия индуктора передается объекту без использования контактов, как это происходит в печах сопротивления. В результате тепловая энергия расходуется более эффективно, а скорость нагрева заметно повышается. Широко применяется этот принцип в области обработки металла: его плавки, ковки, пайки наплавки и т. п. С не меньшим успехом вихревой индукционный нагреватель можно использовать для подогрева воды.
Утепляем ВТП
Прежде всего, одеваем кожух. Берем для этого лист алюминия или нержавейки и вырезаем пару прямоугольников. Загибать их лучше по такой трубе, у которой больший диаметра, чтобы в итоге образовался цилиндр. Далее следуем инструкции.
- Скрепляем половинки между собой с помощью специального замка, используемого для соединения водопроводных труб.
- Делаем пару крышек для кожуха, но не забываем о том,/ что в них должны оставаться дырки для подключения.
- Обматываем устройство термоизоляционным материалом.
- Помещаем генератор в кожух и плотно закрываем обе крышки.
Есть и другой способ увеличения производительности, но для этого нужно знать, как же именно работает чудо-прибор Попова, КПД которого может превышать (не доказано и не объяснено) 100%. Мы то с вами уже знаем, как он работает, поэтому может приступать непосредственно к усовершенствованию генератора.
Как собрать теплогенератор
Инструменты для работы
При всех этих научных терминах, которые могут напугать незнакомого с физикой человека, смастерить в домашних условиях ВТГ вполне возможно. Повозиться, конечно, придётся, но если всё сделать правильно и качественно, можно будет наслаждаться теплом в любое время.
И начать, как и в любом другом деле, придётся с подготовки материалов и инструментов. Понадобятся:
- Сварочный аппарат.
- Шлифмашинка.
- Электродрель.
- Набор гаечных ключей.
- Набор свёрл.
- Металлический уголок.
- Болты и гайки.
- Толстая металлическая труба.
- Два патрубка с резьбой.
- Соединительные муфты.
- Электродвигатель.
- Центробежный насос.
- Жиклёр.
Вот теперь можно приступать непосредственно к работе.
Устанавливаем двигатель
Электродвигатель, подобранный в соответствии с имеющимся напряжением, устанавливается на станину, сваренную или собранную с помощью болтов, из уголка. Общий размер станины вычисляется таким образом, чтобы на ней можно было разместить не только двигатель, но и насос. Станину лучше покрасить во избежание появления ржавчины. Разметить отверстия, просверлить и установить электродвигатель.
Подсоединяем насос
Насос следует подбирать по двум критериям. Во-первых, он должен быть центробежным. Во вторых, мощности двигателя должно хватить, чтобы его раскрутить. После того, как насос будет установлен на станину, алгоритм действий следующий:
- В толстой трубе диаметром 100 мм и длиной 600 мм с двух сторон нужно сделать внешнюю проточку на 25 мм и в половину толщины. Нарезать резьбу.
- На двух кусках такой же трубы длинной каждый 50 мм нарезать внутреннюю резьбу на половину длины.
- Со стороны противоположной от резьбы приварить металлические крышки достаточной толщины.
- По центру крышек сделать отверстия. Одно по размеру жиклёра, второе по размеру патрубка. С внутренней стороны отверстия под жиклёр сверлом большого диаметра необходимо снять фаску, чтобы получилось подобие форсунки.
- Патрубок с форсункой подсоединяется к насосу. К тому отверстию, из которого вода подаётся под напором.
- Вход системы отопления подсоединяется ко второму патрубку.
- К входу насоса присоединяется выход из системы отопления.
Цикл замкнулся. Вода будет под давлением подаваться в форсунку и за счёт образовавшегося там вихря и возникшего эффекта кавитации станет нагреваться. Регулировку температуры можно осуществить, установив за патрубком, через который вода попадает обратно в систему отопления, шаровый кран.
Чуть прикрыв его, вы сможете повысить температуру и наоборот, открыв – понизить.
Усовершенствуем теплогенератор
Это может звучать странно, но и эту довольно сложную конструкцию можно усовершенствовать, ещё больше повысив её производительность, что будет несомненным плюсом для обогрева частного дома большой площади. Основывается это усовершенствование на том факте, что сам насос имеет свойство терять тепло. Значит, нужно заставить расходовать его как можно меньше.
Добиться этого можно двумя путями. Утеплить насос при помощи любых подходящих для этой цели теплоизоляционных материалов. Или окружить его водяной рубашкой. Первый вариант понятен и доступен без каких-либо пояснений. А вот на втором следует остановиться подробнее.
Чтобы соорудить для насоса водяную рубашку придётся поместить его в специально сконструированную герметическую ёмкость, способную выдерживать давление всей системы. Вода будет подаваться именно в эту емкость, и насос будет забирать её уже оттуда. Внешняя вода так же нагреется, что позволит насосу работать намного продуктивнее.
Вихрегаситель
Но, оказывается и это ещё не всё. Хорошо изучив и поняв принцип работы вихревого теплогенератора, можно оборудовать его гасителем вихрей. Подаваемый под большим давлением поток воды ударяется в противоположную стенку и завихряется. Но этих вихрей может быть несколько. Стоит только установить внутрь устройства конструкцию напоминающую своим видом хвостовик авиационной бомбы. Делается это следующим образом:
- Из трубы чуть меньшего диаметра, чем сам генератор необходимо вырезать два кольца шириной 4-6 см.
- Внутрь колец приварите шесть металлических пластинок, подобранных таким образом, чтобы вся конструкция получилась длинной равной четверти длины корпуса самого генератора.
- Во время сборки устройства закрепите эту конструкцию внутри напротив сопла.
Пределу совершенства нет и быть не может и усовершенствованием вихревого теплогенератора занимаются и в наше время. Не всем это под силу. А вот собрать устройство по схеме, приведённой выше, вполне возможно.
Как увеличить производительность устройства
В результате потери тепловой энергии насосом КПД устройства падает, это является главным недостатком. Для борьбы с этим явлением рекомендуется окунуть насос в специальную водяную рубашку, благодаря чему тепло от него будет приносить пользу. По диаметру эта рубашка должна быть несколько больше, чем у насоса. Для этих целей может быть использован отрезок трубы, а может – сделанный из листовой стали параллелепипед. По габаритам он должен быть таким, чтобы все элементы генератора могли в него помещаться, а толщина должна выдерживать рабочее давление системы.
Снижения тепловых потерь также можно добиться путем установки вокруг устройства специального жестяного кожуха. В качестве изолятора может использоваться различный материал, способный выдерживать высокую температуру. Для сборки конструкции состоящей из теплогенератора, насоса и соединяющего патрубка необходимо измерить их диаметры, подобрать трубу нужного диаметра для того чтобы в ней могли поместиться все элементы.
После этого нужно изготовить крышки, которые закрепить с обеих сторон. Все детали внутри трубы нужно надежно закрепить для прокачки насосом сквозь себя теплоносителя. Далее нужно просверлить выходное отверстие и надежно закрепить на нем патрубок. Насос необходимо закрепить как можно ближе к этому отверстию. Ко второму концу трубы следует приварить фланец, при помощи которого закрепить крышку на уплотнителе-прокладке. Также внутри корпуса может быть оборудован каркас, на котором можно будет крепить все элементы. Далее следует собрать устройство, проверить прочность его креплений, герметичность, вставить в корпус и закрыть. Если нет протекания, при открытии/закрытии крана на входе отрегулировать температуру. Утеплить ВТП.
Вероятно, вас может заинтересовать информация о создании солнечного коллектора самостоятельно. Изготавливаем из листа алюминия или нержавейки кожух, после того, как вырезаем два прямоугольника, загибаем их по трубе до образования цилиндров. Половинки между собой соединяются специальным замком, который используется для соединения водопроводных труб. Нужно для кожуха сделать пару дырок и оставить отверстия для подключения. Обмотать устройство термоизоляцией, и поместить генератор в кожух закрыв при этом плотно крышки.
Еще одним способом повышения производительности ВТП является создание гасителя вихрей
Для этих целей нужно будет использовать: сварку, турбинку, лист стали, трубу с толстыми стенками. Размеры трубы должны быть меньшими, чем размеры теплогенератора. Из нее нужно сделать два кольца, каждое по 5 см, из листа вырезать несколько полосок.
Следует вставить в тиски пластину и на одном ее конце навесить кольца металлические, которые приварить к пластине. Далее следует вынуть пластину и повернуть ее другой стороной, взять вторую пластину и поместить ее в кольца так, чтобы пластины располагались параллельно. Такую же процедуру проделываем со всеми пластинами. После этого следует провести сборку вихревого генератора, а конструкцию разместить напротив сопла.
Вихревой теплогенератор в работе (видео)
https://youtube.com/watch?v=tgdkD7GU_T4
Фото: million-b.narod.ru, kapanadze.zipkatalog.ru, dewa.ru, zhukovsky.all.biz